
type graph = bool [n,n];
type kind = (PROBE, ECHO);
chan probe_echo[n](kind k; int sender; graph topology);
chan finalecho(graph topology);

process Node[p = 0 to n-1] {
bool links[n] = neighbors of nodep;
graph newtop, localtop = ([n*n] false);
int first, sender; kind k;
int need_echo = number of neighbors- 1;
localtop[p,0:n-1] = links; # initially my links

receive probe_echo[p](k, first, newtop); # get probe
send probe on to to all other neighbors
for [q = 0 to n-1 st (links[q] and q != first)]
send probe_echo[q](PROBE, p, ∅);

while (need_echo > 0) {
receive echoes or redundant probes from neighbors
receive probe_echo[p](k, sender, newtop);
if (k == PROBE)
send probe_echo[sender](ECHO, p, ∅);

else # k == ECHO {
localtop = localtop or newtop; # logical or
need_echo = need_echo-1;

}
}
if (p == S)
send finalecho(localtop);

else
send probe_echo[first](ECHO, p, localtop);

}

process Initiator {
graph topology; # network topology
send probe_echo[source](PROBE, source, ∅);
receive finalecho(topology);

}

Figure 9.12 Probe/echo algorithm for computing the topology of a graph.

Copyright © 2000 by Addison Wesley Longman, Inc.

