type graph = bool [n,n];

chan probe[n] (int sender);

chan echo[n] (graph topol ogy) # parts of the topol ogy
chan final echo(graph topology) # final topol ogy

process Node[p = 0 to n-1] {
bool 1inks[n] = neighbors of nodep;
graph newtop, localtop = ([n*n] false);
i nt parent; # node from whom probe is received
| ocaltop[p,0:n-1] = links; # initially nmy links

recei ve probe[p] (parent);
send probe to other neighbors, who are p’s children
for [q =0ton-1 st (links[g] and g != parent)]

send probe[q] (p);

receive echoes and union theminto | ocaltop
for [q =0to n-1 st (links[g] and g != parent)] {
recei ve echo[p] (newt op) ;

localtop = localtop or newtop; # |logical or
}
if (p==29

send final echo(l ocal top); # node S is root
el se

send echo[parent] (I ocal t op);

}

process Initiator {
graph topol ogy;
send probe[S] (S) # start probe at |ocal node
recei ve final echo(topol ogy);

}

Figure 9.11 Probe/echo algorithm for gathering the topology of a tree.

Copyright © 2000 by Addison \&sley Longman, Inc.

