
separate (Dining_Philosophers)
task body Waiter is
entry Wait(ID); -- used to requeue philosophers
eating : array (ID) of Boolean; -- who is eating
want : array (ID) of Boolean; -- who wants to eat
go : array(ID) of Boolean; -- who can go now

begin
for j in ID loop -- initialize the arrays
eating(j) := False; want(j) := False;

end loop;
loop -- basic server loop
select
accept Pickup(i : in ID) do -- DP(i) needs forks
if not(eating(left(i)) or eating(right(i))) then
eating(i) := True;

else
want(i) := True; requeue Wait(i);

end if;
end;

or
accept Putdown(i : in ID) do -- DP(i) is done
eating(i) := False;

end;
-- check neighbors to see if they can eat now
if want(left(i)) and not eating(left(left(i))) then
accept Wait(left(i));
eating(left(i)) := True; want(left(i)) := False;

end if;
if want(right(i)) and not eating(right(right(i)))
then accept Wait(right(i));
eating(right(i)) := True; want(right(i)) := False;

end if;
or
terminate; -- quit when philosophers have quit

end select;
end loop;

end Waiter;

Figure 8.19 Dining philosophers in Ada: Waiter task.

Copyright © 2000 by Addison Wesley Longman, Inc.


