
Equational Reasoning on x86 Assembly Code

Kevin Coogan and Saumya Debray
Department of Computer Science

The University of Arizona
Tucson, AZ 85721, USA

Email: {kpcoogan, debray}@cs.arizona.edu

Abstract—Analysis of software is essential to addressing
problems of correctness, efficiency, and security. Existing
source code analysis tools are very useful for such purposes,
but there are many instances where high-level source code
is not available for software that needs to be analyzed. A
need exists for tools that can analyze assembly code, whether
from disassembled binaries or from handwritten sources. This
paper describes an equational reasoning system for assembly
code for the ubiquitous Intel x86 architecture, focusing on
various problems that arise in low-level equational reasoning,
such as register-name aliasing, memory indirection, condition-
code flags, etc. Our system has successfully been applied to
the problem of simplifying execution traces from obfuscated
malware executables.

Keywords-equational reasoning; x86 assembly; static and
dynamic analysis

I. INTRODUCTION

The ability to analyze software for correctness, efficiency,
and security is essential. In the case where the software
is developed in-house using high level source code, there
are myriad analysis tools available for such purposes (see
[1] for an overview). However, there are many situations
where high-level source code is not available. For example,
large projects often use commercially available libraries that
provide only the library binaries. Source code analysis must
trust the library documentation regarding its behavior, and
will not be aware of any bugs or security holes that may exist
in the libraries themselves. Operating systems (e.g., Linux)
often use inline assembly code and handwritten assembly
code modules to handle architecture-specific functionality.
This assembly code typically cannot be handled by source
code analysis. Finally, software security companies must
constantly analyze the latest viruses, worms, and other
malicious code that threaten users on the Internet. Such
programs are often written directly in assembly, and those
that aren’t typically don’t provide their source code.

With respect to malware, most instances are targeted at
personal and business computers. The most common instruc-
tion set architecture for such computers is the Intel x86
architecture due to its close integration with the Windows
operating systems. Unfortunately, this architecture presents
some unique problems that prevent the straightforward ap-
plication of source code analysis techniques. The use of

different parts of the same user registers to represent differ-
ent sized values, and the implicit operands and side effects
of x86 instructions, require modifications or extensions to
current techniques for proper analysis.

Our current research uses dynamic analysis techniques to
deobfuscate and understand malware that has been protected
from reverse engineering using obfuscation and custom-
virtualization techniques. Obfuscation masks the intent of
a computation by adding a lot of code whose effects can
be tedious and time-consuming to work out. Virtualization
hides the control flow behavior of the original program:
every byte-code instruction that is executed is reached by a
jump from the virtual machine interpreter’s dispatch routine,
making it difficult to disentangle control transfers arising
from the original program logic from those that correspond
to a straight-line sequence of byte-code instructions. We ad-
dress this problem by using equational reasoning to identify
the origins of control transfer targets in the virtual machine.

The main contribution of this paper is the presentation
of a set of guidelines for building an equational reason-
ing system capable of handling x86 assembly code. In
addition, we implement a prototype tool that can perform
equational reasoning on 32-bit x86 assembly code in the
context of dynamic analysis. Equational reasoning allows
us to handle all implicit functionality of x86 instructions by
translating each instruction into a set of equivalent equations.
Combining equational reasoning with specific knowledge
of x86 user registers allows us to handle the dependencies
between instructions that may be missed by typical source
code analysis techniques. While virtualized malware was a
motivating factor for its creation, the system we present
is generic and applicable to any of the above motivating
examples. We are unaware of any existing system that can
perform such equational reasoning on x86 assembly code.

II. BACKGROUND AND MOTIVATION

There are many applications where assembly code is the
most convenient form of a program that is available for
analysis. Third party software libraries, architecture-specific
operating system modules, and malicious code that must be
defended against are all examples of situations where there
is a need for analyzing code, but there is not likely to be any
high-level source code to analyze. While our own motivation

comes from the area of malware analysis, our system is
generic enough to be applied to all of these applications. To
that end, we present a motivating example that is outside
our own area of specialization, and generic enough to be
appreciated by a wider audience. The code in Figure 1
is a small snippet of handwritten assembly code used in
the Linux kernel. It comes from the module that performs
display adapter and video mode setup for the operating
system. This particular sample is doing a check to determine
if the video card belongs to a specific manufacturer or not.

s3_2: movw %cx, %ax (1)
orb %bl, %ah (2)
call outidx (3)
call inidx (4)
andb %cl, %al (5)
pushw %ax (6)
movb %bl, %ah (7)
movb %cl, %al (8)
call outidx (9)
popw %ax (10)
cmpb %ch, %al (11)
je no_s3 (12)

Figure 1. Assembly code snippet from linux 2.4 kernel for determining
video card manufacturer.

More specifically, the code works by testing whether or
not a value can be written to a particular port on a video card.
Line (3) attempts to write a value to that port, then line (4)
tries to read that value back from the device. It is a known
characteristic of “S3” video devices that this port cannot be
written to. Hence, if the value is successfully written, then
the device is not from “S3.” This final check is done by line
(11), when the value written to the device, is compared to the
value read from the device. A bug in the code could result
from the wrong initial value being loaded, or the wrong
bits of a register being tested. It would be convenient for
validation reasons to be able to say something about the
values of ch and al at the end of this routine, to see if they
match with the author’s expectations.

One of the problems when trying to analyze x86 as-
sembly code is the register conventions supported by the
architecture. The standard user registers can be accessed in
whole or in predefined parts, depending on what part of the
value is needed. Figure 2 shows the standard layout for the
x86 user registers. The effect of this layout is that parts of
the register can be accessed and changed with one name,
and the changed value can be used later under a different
name. For example, the comparison at the end of the code
uses the value stored in the al register. This value comes
from the previous line popw %ax. This relationship must
be accounted for by any analysis or the dependency between
these instructions will be missed. One can imagine that, as
the size of the code increases, the ability to account for these
relationships by hand gets harder and harder.

There are also issues with implicit functionality in x86

rH rL

rX

ErX

r = {A, B, C, D}

Figure 2. Register layout for x86 general purpose registers.

assembly. The last line of Figure 1 is a conditional jump
statement. In x86 assembly, whether or not a conditional
jump is taken is typically dependent on the value of the
flags register eflags. In our example, the value of the flags
register is set by the preceding cmp operation. In general,
the flags register can be set by any number of instructions,
including arithmetic instructions like add and or that also
change other register values. These flag changing instruc-
tions don’t have to immediately precede the conditional
jump either. Since the conditional behavior depends only
on the value of the eflags register, this value can be set
at any time, as long as no other instruction alters the value. It
could also be set at some program point, saved, then restored
at a much later point.

Finally, we note that assembly code is, by nature, a very
low level means of expressing a program. As a result, even
simple tasks can require many, many assembly language
instructions to implement. This fact is one of the primary
reasons for programming in higher level languages. Hence,
even if the assembly code can be adequately analyzed, there
is a need to express the results of the analysis in a way that
is more easily read and understood by humans.

These issues, and others associated with x86 assembly,
motivate our use of equational reasoning to analyze as-
sembly code. Equational reasoning begins with equations
that express the desired functionality. We can combine the
functionality expressed by the assembly instructions with
our knowledge of the x86 architecture to develop sets of
equations for each instruction that fully and completely
define its behavior. Furthermore, we can use our knowledge
of the x86 architecture and register conventions to precisely
define the relationships between an instruction and any
previous instructions that contributed to the values of its
operands. Once a correct and complete set of equations is
derived from the code, it can be simplified to give a single
expression that represents the value for a particular variable
at a specific point in the code.

We will return to our motivating example in our discussion
of results in section V.

III. IMPLEMENTATION

While equational reasoning has been applied in various
contexts to evaluation or analysis of computer programs,
until now, it has not been applied to the specific problem

of analyzing x86 assembly code. The x86 instruction set
presents two primary issues that must be addressed in order
for any such system to be useful. First, x86 instructions
often have implicit functionality that must be captured, and
second, the ability to define parts of registers or mem-
ory locations creates dependencies that must be correctly
handled. The remainder of this section is broken into two
parts. Section III-A gives an overview of our system and the
rules for performing the equational reasoning. Section III-B
details modifications to the analysis using the concept of
liveness that are needed to make computation of the problem
practical.

A. System Overview

We wish to be able to generate a set of equations that are
equivalent to an x86 assembly code program. With this set
of equations, we can choose some point in the program that
is of interest to us, and use equational reasoning to derive
a simplified expression that represents the value of some
variable at that program point. Our system breaks this work
down into the following steps:

1) Translate instructions into equations.
2) Instrument list of equations to handle dependencies.
3) Generate simplified expressions for variables of

interest.

III.A.1. Notation
x86 assembly instructions are written in the following syn-
tax, where opcode denotes the instruction operation and opi

the operands:
opcode op1, . . . , opn

Typically, n ≤ 2, though some instructions have additional
implicit source and/or destination operands. For instructions
that have both source and destination operands, the first
operand is typically both a source and a destination operand:
for example, the instruction

add eax, ebx

computes ‘eax := eax + ebx’. In general, an operand
can be a constant value, a register, or an address expression
that specifies a memory location. A special case of the latter
is the indirect addressing mode, which is written as ‘[e]’,
where e is an address expression, and denotes the memory
location whose address is given by the expression e. For
example, an operand ‘[ebx+4]’ denotes the memory loca-
tion whose address is obtained by adding 4 to the contents
of register ebx. Some instructions may also have optional
modifiers, e.g., prefixes, that modify how the instructions are
executed. We discuss these modifiers later in the paper.

We begin with a dynamic trace of x86 instructions that
includes information about instructions as well as the values
of all user registers. Our current implementation uses Ether
[2], an academic project that allows great customization and
configuration, but which is limited to handling code exe-
cuting on 32-bit Windows XP SP2. This setup is more than

adequate for our needs, due to the large amount of malicious
code samples targeted at 32-bit Windows. However, we wish
to emphasize that our approach generalizes in a straight-
forward way to 64-bit assembly code. We simply have not
had the need to implement this functionality. Other tracing
tools such as Qemu [3] may help with this issue, but have
not been studied in depth.

Each instruction in the trace is uniquely identified by
its position in the trace, which we refer to as its order
number. Registers are treated as variables, and are given
the same name as their register name. Memory locations
are also treated as variables with the generic name MLOC:
a (contiguous) range of memory locations {a0, . . . , an} is
represented as MLOC[a0 .. an]. Immediate values are used as
is. Operations are substituted with a suitable mnemonic for
understanding. The value of a (register or memory) operand
op immediately after the execution of the instruction with
order number k is denoted by opk. We use the notation op⊥
to represent the value of an operand op where the instruction
that defined its value is not known yet. We use the notation
opconst when the value used has no defining instruction in
the code (this can happen, e.g., for pre-initialized memory).
The value stored at a memory location a is denoted by
ValueAt(a).

III.A.2. Instruction Translation
In the first step, we make a pass over the execution trace
and process each instruction as follows. We use the semantic
specifications for the instruction [4] to create a basic set of
equations that capture the effects of that instruction, with
operands represented as follows: for an instruction with
order number k,

1) a destination operand dest is represented in the equa-
tion(s) as destk;

2) a source operand src is represented as src⊥ (this
subscript will be adjusted in the next step when
dependencies are traced and the instruction that defines
the value of that operand becomes known or it is found
that no such instruction exists).

Figure 3(a) gives two typical x86 instructions with their
order numbers in a snippet of a dynamic trace, and Figure
3(b) shows the result of instruction translation on those
instructions. The code was chosen for demonstration only,
and its function is irrelevant to our discussion. The “pop”
operation, according to the Intel documentation, first moves
the “popped” value from the memory location pointed at
by the stack pointer esp to the destination location. Then,
the value of the stack pointer is increased according to the
size of the value moved. The and operation is translated
according to its definition.

In addition, we must also account for other implicit
functionality or side effects of the x86 instructions. For
example, some x86 instructions also implicitly set or change
the value of the eflags register. We introduce the Flag

100: pop eax
101: and al, 0x4

(a)

eax100 = ValueAt(MLOC[1000 .. 1003]⊥)
esp100 = esp⊥ + 4
al101 = al⊥ & 4

(b)

Figure 3. Simple instruction translation example for a snippet of dynamic
trace. (a) gives the original x86 assembly code, and (b) gives the equations
derived from the instruction definitions.

operation, which takes an expression and returns the value
of the eflags register that results from evaluating that
expression. We then add a new equation to our set of the
form eflags = Flag(expression) to capture this
implicit behavior.

Finally, if the instruction being translated accesses a
memory location, then additional equations are added that
represent how the memory address location was calculated.
These memory-location equations allow our analysis to
capture and correctly handle indirection. This is a significant
obstacle in analyzing x86 assembly code since indirect
memory accesses are legal in nearly all x86 instructions.
Figure 4 shows the result of these additional steps on our
example code from Figure 3(a).

(1) MLOC[1000 .. 1003]100 = esp⊥
(2) eax100 = ValueAt(MLOC[1000 .. 1003]⊥)
(3) esp100 = esp⊥ + 4
(4) al101 = al⊥ & 4
(5) eflags101 = Flag(al⊥ & 4)

Figure 4. Final translated equations as a result of step 1.

III.A.3. Handling Dependencies
The purpose of this step is to associate all of the source
operands in the equations from step 1 with their definitions.
We do this by scanning the equation list backwards, looking
for where the source is defined. If the use of a variable was
always preceded by an exact definition, then this step would
be trivial. However, in x86 assembly, this is not always true.
Consider equations (2) and (4) in Figure 4. Equation (2) sets
the value of the eax register. Equation (4) uses the value
of the al register. Without more information, it appears that
there is no relation between these two instructions. However,
this is not the case. The al register is simply the least
significant 8 bits of the eax register. Thus, equation (2)
is determining the value of al used in equation (4). There
are several such relationships for many of the accessible
registers in the x86 architecture, as was shown in Figure
2. Furthermore, the x86 architecture is what is known as
“byte addressable.” This means that any byte of accessible
memory can be written to or read from by an instruction.
The x86 architecture also allows for instructions that read

more than one byte at a time. These rules and relationships
may make naive attempts at equational reasoning incorrect.

We note that the definition of source operands falls into
one of five cases. In case I, the destination of the equation
that defines the source operand is an exact match for the
source operand. That is, if the source operand is eax, our
backward search will first find an equation that sets the value
of eax. In case II, the first equation we find in our search
completely defines the source operand through a different
name or reference. For example, if our source operand is
ah and our defining equation destination is eax. To put
it another way, the source operand is a proper subset of
the defining destination operand. In case III, the opposite is
true. The source operand is a proper superset of the defining
destination operand. This means that the full definition of the
source operand comes from multiple previous instructions.
Case IV occurs when there is an overlap between source
operand and its definition, but neither is a subset of the other.
As we will see, this case is not possible when dealing with
user registers, but may occur for memory locations. Case V
is where no definition is found.

In case I, the source operand is defined by a previous
equation, and requires only that we note where the definition
takes place. Consider the second equation in Figure 4.
The source operand MLOC[1000 .. 1003]⊥ is passed to the
ValueAt function. If we scan backwards in our list of
equations, we see that this source is defined in the previous
equation. We note the unique identifier of the defining
equation, and use it to label the source operand.

In case II, the source operand is completely defined by one
previous equation, but using a different name or reference.
Consider the fourth equation in Figure 4 that changes the
value of the al register. The source is fully defined by
equation (2) in Figure 4. However, we are only using part
of that definition. When we simplify instructions later in
the process, we will want to replace this operand with its
definition. However, we cannot substitute eax100 because
this is a four byte value, and the operand in equation
(4) is a one byte value. For correctness, we must specify
which part of the value is being used. We accomplish this
by introducing a new operation called Restrict. The
Restrict operation takes a variable and a byte mask
representing which part of the variable is to be used, and
returns that portion of the value stored in the variable.

In the example of equation (4), we begin by scanning
backwards through the list of equations looking for the
definition of al. When we reach equation (2), we recognize
that al is a subset of the definition destination. We create
a new equation (marked with ∗ in Figure 5) after equation
(2) that precisely defines the variable we are searching for
in terms of how it was defined in equation (2) and using
the Restrict function to select the part of the value that
we need. We use the identifier from the defining equation
to label the destination of our new equation. Figure 5 shows

the example equations modified to handle case I and case
II source definitions. The byte mask passed to Restrict
denotes that the least significant byte (least significant 8 bits)
of eax is used. Note that the al source in equation (5)
changed in the same way as in equation (4). Since the same
instruction calculates both al and eflags, they should
appear the same in the set of equations.

It may be tempting to forgo the Restrict operation entirely
for a more intuitive approach of handling all bytes of the
CPU registers separately. However, careful examination of
this approach reveals limitations. First, this approach will
significantly increase the total number of equations for the
dynamic trace. Second, later uses of a register will require
concatenation of these partial values. When the value is
unknown, this approach greatly increases the complexity of
the resulting expression. Our experience tells us that the
two main contributing factors to run time are number of
equations and the complexity of the individual expressions.
Hence, we favor our approach.

(1) MLOC[1000 .. 1003]100 = esp⊥
(2) eax100 = ValueAt(MLOC[1000 .. 1003]100)
(*) al100 = Restrict(eax100, 0001)
(3) esp100 = esp⊥ + 4
(4) al101 = al100 & 4
(5) eflags101 = Flag(al100 & 4)

Figure 5. Case I and case II source definitions handled correctly.

Case III occurs when multiple previous equations con-
tribute to the full definition of a source operand. We handle
this situation by adding equations to capture the first partial
definition of the source operand, then continuing the search
for the remainder of the definition. We have not presented
an example of case III in our examples so far because it
is a little more complicated, so consider the new example
equations in Figure 6. For our discussion, we are searching
for the definition of the source operands in equation (4).

(1) eax100 = 1000
(2) al100 = Restrict(eax100, 0001)

...
(3) al120 = al100 + 4

...
(4) ebx140 = eax⊥ + 4

Figure 6. Example of case III type source dependencies.

As we search backward for the definition of eax⊥ in our
equations, we find it partially defined by equation (3). We
cannot ignore this partial definition, of course. However, it
is also not a complete definition of the register. To handle
this case, we add a new equation that precisely defines the
source operand we are looking for in terms of the partial
definition and the still unknown parts. For example, the
value of eax at this point is the previous value of eax,
combined with the changed value of al. We use simple
bit-wise operators to accomplish this combination. Figure

7 shows this equation marked with a ∗. Note that the eax
operand in this equation now needs a suitable definition. We
recursively call our search method on this new operand until
it has been fully defined. In this example, that happens when
we reach equation (1), so we assign it identifier 100.

(1) eax100 = 1000
(2) al100 = Restrict(eax100, 0001)

...
(3) al120 = al100 + 4
(*) eax120 = (eax100 & 1110) | al120

...
(4) ebx140 = eax120 + 4

Figure 7. Case III dependencies from Figure 6 handled correctly.

Case IV occurs when the source operand is partially
defined by a previous destination operand, and these two
operands overlap but neither is a subset of the other. For
the user registers, this case is impossible. If we look again
at Figure 2, we see that in no case does a legal register
name overlap another name in this way. However, in the case
of memory operations, this can occur. To handle this case,
we combine our solutions from Cases II and III. First, we
Restrict the destination operand so that the destination is
a subset of the source. Then we recursively call our function
to look for the remainder of the definition. Due to space
constraints we do not offer any Case IV examples.

Case V is a trivial case where no definition of a value is
found. This situation can arise for memory accesses when
the memory location holds a pre-initialized constant that
does not change throughout the execution of the program. It
has also been seen in obfuscated code, where the code uses
uninitialized register values in junk code that do not affect
the results of the execution to try to make program analysis
more difficult. In all instances of Case V, we simply label
these values as constants. That is, a source operand src with
no explicit definition will be labeled srcconst.

III.A.4. Expression Simplification
We note that at this stage, all source operands have a unique
and precise definition previously in the equation list. Equa-
tional reasoning then becomes a straightforward operation.
We begin by identifying what values are of interest. This
could be the value of a register used in an instruction, or
the parameter of a function call that has been pushed onto
the stack, etc. . . . For each variable of interest, we create a
trivial equation that assigns its value to itself at a point in
the program where we want to analyze it (e.g., eax103 =
eax⊥). We then calculate the source operand definitions for
the equation, as before.

Now, we substitute the right hand side of the equation
with the expression that defines it previously in the list of
equations, so that the right hand side of the equation is the
root of a syntax tree structure that represents the expression.
We can simplify our syntax tree using a set of mathematical

rules, as desired. We continue this process, substituting
operands with their defining expressions and simplifying,
until no more changes can be made. At this point, we have a
simplified expression that represents the variable of interest.
We note that there are existing equation solving tools that
could be made to work with our resulting equations, but we
implement this simplification step ourselves.

B. Run Time Considerations

While the solutions presented to cases II and III (and
by extension Case IV) above are mathematically sound,
they present other problems during the equational reasoning
portion of our system. Mainly, it is possible for these ap-
proaches to lead to an exponential increase in the size of the
equations. Consider the example equations given in Figure
8. This example is similar to the one presented in Figure 6,
except there are multiple changes to the value of al. Here,
the ellipses indicate other instructions that are irrelevant to
our analysis, except that they prevent the simplification of
equations (2), (3), and (4) to avoid this problem. If we
apply our approach to handling source definitions, we get
the equations in Figure 9, because at each step we are adding
a new equation with an eax term, then looking for the
definition of that term.

(1) eax100 = 1000
...

(2) al120 = al⊥ + 4
...

(3) al140 = al⊥ + 4
...

(4) al160 = al⊥ + 4
...

(5) ebx180 = eax⊥ + 4

Figure 8. Example leading to exponential explosion of equations.

However, many of these equations are redundant. Exam-
ining the original equations shows that we don’t care about
the full value of eax anywhere except at the beginning and
the end. If we try to simplify equation (9) by substituting
the term eax160 with its definition, then repeat this process,
we must handle many eax terms that are not contributing
to the value of the equation. In our example, this is not too
important, because the original value of eax is constant and
can be simplified, but if this value were unknown, then our
simplified equation would become longer and more complex.
In severe cases, this added complexity can adversely effect
run time to the point of being impractical.

To handle this problem, we use the concept of liveness to
modify the search algorithm that we use to find the source
definitions. Simply put, a variable in a program is “live” if
its value may be used later. We can use this idea to deal
with unnecessary instances of a variable by tracking which
parts of the variable are live. In our example, we saw that
we had to create new equations that used eax each time

(1) eax100 = 1000
(2) al100 = Restrict(eax100, 0001)

...
(3) al120 = al100 + 4
(4) eax120 = (eax100 & 1110) | al120

...
(5) al140 = al120 + 4
(6) eax140 = (eax120 & 1110) | al140

...
(7) al160 = al140 + 4
(8) eax160 = (eax140 & 1110) | al160

...
(9) ebx180 = eax160 + 4

Figure 9. Exponential explosion of equations resulting from equations in
Figure 8.

we encountered a partial definition. This happened several
times since each new equation had its own eax source
operand. However, the identification of some of these partial
definitions was incorrect, since our operand used the three
leftmost bytes of eax, and the definitions defined only the
rightmost byte. In truth, these equations do not define the
relevant part of the source operand at all. To capture this
idea, we assign a liveness value to all operands when we
search for their definitions. In the general case, the entire
variable is live, but in the case of our added equations, we
use our knowledge of what part of the variable is used to
assign a more precise value.

(1) eax100 = 1000
(2) al100 = Restrict(eax100, 0001)

...
(3) al120 = al100 + 4

...
(4) al140 = al120 + 4

...
(5) al160 = al140 + 4
(6) eax160 = (eax100 & 1110) | al160

...
(7) ebx180 = eax160 + 4

Figure 10. More precise results that avoid problem of exponential
explosion.

Applying this approach to our original example in Figure
8, when we search for the definition of eax in equation (5),
we find the partial definition in equation (4). We add our
extra equation as before, but when we recursively search
for the definition, we tell the search algorithm that only
the leftmost three bytes of eax are live. Thus, continuing
to search backwards, we see equations (2) and (3), and
recognize that they do not affect the value of eax at all
because they do not define any of the live parts of the
variable. Only when we reach equation (1) do we find a
definition of our variable. The final set of equations given
in Figure 10 produces better, more simplified, results.

We observe that our analysis uses a byte mask to mark
which parts of a variable are live. Registers are of fixed
size, and so a finite sized byte mask makes sense. In x86,

most memory accesses are also of fixed size. However, in the
case of string operations that carry a rep, repz, or repnz
prefix, this is not the case. These prefixes can cause a string
instruction to effectively access any sized memory block,
by repeating the string operation. To allow for our fixed size
byte masks, we handle each repeat of these string operations
as separate instructions. Hence, all memory accesses can
access a maximum of 4 bytes for a 32-bit program.

IV. RESULTS

We begin with a small toy example to demonstrate our
tool. We wrote a sample program that calculates the factorial
of an input value, then prints the value to the screen. We
captured a dynamic trace of the execution of our program
with the input value 4, and used that trace as input to our
system. Using our equational reasoning system to analyze
the arguments passed to the print routine, the value that is
printed out is determined to be the expression:

ValueAt(MLOC[12ff78 .. 12ff7b]312)
= ((((1*(1))*(1+1))*(1+2))*(1+3))

This indicates that the value passed to the print routine was
the result of multiplying 1× 1× 2× 3× 4, or 4!, which is
correct. The result also indicates that there is a redundancy
in our implementation. It appears that our code is looping
4 times, and is calculating the initial value times 1. We
checked our source code and confirmed that this is the case.

Next, to illustrate the use of our tool on more practical,
real world situations, we present a couple of examples
from our current area of research. Our ongoing research
project is to deobfuscate malicious code to make it easier for
security analysts to understand. One such obfuscation that
we have concentrated on is a technique called virtualization,
where instructions from a program are translated into virtual
instructions, and a custom virtual machine is built into the
code to interpret these instructions. If we analyze the control
flow of the resulting program, we see that execution of the
virtualized code is really just some dispatch routine that is
called over and over again. This dispatch routine serves a
simple function–to fetch the address of the next instruction
to execute, then to jump to that instruction.

Despite being a very simple concept, the implementation
of the dispatch routine is often very complex and confusing.
Consider the example in Figure 11. This example was gen-
erated by first compiling a sample program written in the C
programming language. This executable was then virtualized
using the commercially available software CodeVirtualizer
[5]. (We conjecture that the code inserted by CodeVirtualizer
for its virtual machine is handwritten assembly code.) The
example begins with the first instruction from the dispatch
routine at order number 297. This instruction loads a byte
from memory into the al register. The instructions at order
numbers 305 through 312 do some calculation, then combine
this calculation with the value in the al register. The
instructions at order numbers 369 and 379 move this value

onto the stack, then retrieve it later. Finally, the example
ends with the actual jump to the virtual instruction. Notice
that the jump occurs at order number 381, indicating that the
dispatch routine consists of 85 instructions. As an analyst,
we may be interested to know how the address of the virtual
instruction is calculated. This may give us insight into what
all of those instructions are doing, and why they are needed.

297: lodsb
...
305: mov bh, 0xa4
306: xor bh, 0x25
307: or bh, 0x7d
308: sub bh, 0x72
309: shr bh, 0x7
...
312: add al, bh
...
369: mov [esp], eax
...
379: pop eax
...
381: jmp dword near [edi+eax*4]

Figure 11. Sample code from CodeVirtualizer dispatch routine.

We can use our equational reasoning system to generate
an expression for eax and edi at the point of the jump
to the virtual instruction. First, we present an intermediate
result in Figure 12. For the purpose of discussion, we have
performed our analysis for the eax register, and suppressed
any expression simplification except for simple substitution.
The resulting expression is too long to reproduce completely,
but we have included those parts relevant to the code in
Figure 11. We see that the value of eax starts with the value
from memory location 0x4090f4. This is the memory lo-
cation implicitly accessed by the instruction at order number
297. We also see that this value is a constant, indicating
that the value in this memory location has not changed
since the program began execution. Next, we see that the
arithmetic operations of instructions 305 through 309 are
captured by the expression. These operations are mainly
combining immediate values, which can be simplified away.
We also see that the moves of the value to and from the
stack have disappeared through simple substitution.

eax = ValueAt(MLOC[4090f4 .. 4090f4]const)
−...
+(((0xa4 ˆ 0x25) | 0x7d) −0x72)
� 0x07

+...

Figure 12. Unsimplified partial expression for eax register (arithmetic
operators are as in C or Java).

Figure 13 shows the results of our full analysis with
simplification on the registers eax and edi at the point

of the dispatch jump. Here we see that the manipulation of
the value read from memory is much simpler than appeared
at first. This appears to be a simple decryption where we
add some immediate value, then xor the result with another
immediate value. The value of eax then is just a value read
from memory, and decrypted using a hard-coded decryption
key. We also see that the value for edi is a constant value.
By looking at some other instances of the dispatch routine,
we see that edi holds the address of a table, and eax
indexes into that table to retrieve the instruction addresses.

eax381 = (ValueAt(MLOC[4090f4 .. 4090f4]const)
+0x75) ˆ 0x6c

edi381 = 0x00404200

Figure 13. Simplified expressions for eax and edi registers.

Next, we move on to a slightly more complicated ex-
ample. The code in Figure 14 shows the implementation
of conditional control flow logic in another virtualization
product known as VMProtect [6]. VMProtect makes de-
obfuscation difficult in several ways. Here, it has imple-
mented a conditional branch statement without the use of
the standard x86 branch instructions. Instead, instructions
1438-1440 and 1450-1452 load the addresses of the if and
else instructions, respectively, onto adjacent locations on
the stack. The address of the smaller memory address is
also saved to memory (not shown). Next, some statement is
executed that calculates the value for the eflags register.
That value is masked so that all that remains is the flag that is
needed (not shown) leaving the result in eax of instruction
2017. This flag value is bit-shifted to the right, so that if
the flag value was true, the resulting value in eax is 4.
Otherwise, the resulting value in eax is 0. Then the value
in eax is added to the smaller address that was saved earlier.
The effect is that if the flag was false, the smaller address
(i.e., the stack address of the if clause) will be used in
instruction 2057 to load a value into eax. If the flag was
true, then the address of the else clause will be used. This
stack address is then used in instruction 2310 to load the
table index of the next instruction to execute.

One of the tasks that we need to perform when deob-
fuscating such code is to identify the conditional control
flow logic of the original program. Here, that logic has
been hidden, and simple analysis to see how the target
address of the jump was calculated only reveals the use of
a constant address value loaded at instruction 2314. Figure
15 shows results we obtained from our equational reasoning
on the sample code from Figure 14. We see that the value
of eax used to index into the table in instruction 2317
is simply a constant value. If we follow the indirection in
instruction 2314 to see how the value of esi is calculated,
we see that it is also a constant value. However, if we
follow the indirection in instruction 2057 to see how eax
was calculated we get a very complex expression that is

1438: mov eax, [esi]
1439: sub ebp, 0x4
1440: mov [ebp+0x0], eax
...
1450: mov eax, [esi]
1451: sub ebp, 0x4
1452: mov [ebp+0x0], eax
...
2017: shr eax, cl
...
2039: add [ebp+0x4], eax
...
2056: mov eax, [ebp+0x0]
2057: mov eax, [ss:eax]
...
2058: mov [ebp+0x0], eax
2310: mov esi, [ebp+0x0]
...
2314: mov al, [esi]
2315: inc esi
2316: movzx eax, al
2317: jmp dword near [eax*4+0x405091]

Figure 14. Sample code from VMProtect implementation of conditional
control flow.

conditionally dependent on the return value of a call to the
“atoi” function, which is then bit-shifted to the right and
added to a stack address. The complete expression is too
complicated to reproduce here, however, we can confirm that
this is exactly the calculation we described above.

eax2056 = 0x0012ff74 +
...(Flag(...atoi(0x003548e1)...)

� 0x04)
esi2314 = 0x00405765
eax2317 = 0x0000002d

Figure 15. Conditional control flow instructions from VMProtect example.

This analysis proves that the calculation of the address of
the next instruction at this point in the code is conditionally
dependent. How and why to follow the indirections in the
code is not discussed here, and is the subject of our ongoing
research into the deobfuscation of malicious code. However,
we do see from this example how difficult the task would
be without some form of simplification such as that given
to us by equational reasoning. In this example, the code
spans 880 instructions in the dynamic trace. At each instance
of indirection, we can use the simplified expression to
determine if there is a dependency that we care about.

Our system is not limited to simply analyzing hand-picked
locations in the dynamic trace. Since each location typically
depends on one or more previous locations in the trace, and
those previous locations depend on previous locations, we
found it easy to implement a general solution that performs
equational reasoning to calculate a simplified expression for
every single destination operand in every generated equation
from the trace. Thus, examining a particular location is done

by simply looking the expression up in the list of results.
To give an example of the run time of this “all des-

tinations” approach, we executed the code on a sample
dynamic trace of 106407 instructions, which generated a
total of 261977 equations. Full expression simplification for
all destination operands ran in 489.0 seconds, on average.
This time corresponds to approximately 218 instructions per
second or 536 equations per second. Tests were run on an
Intel Core 2 Duo E6600 2.4GHz CPU with 4GB RAM.

V. DISCUSSION AND FUTURE WORK

A. Applications to Static Analysis

We have implemented our dynamic system because of an
immediate need for such a system in our ongoing research
work. However, the techniques we used are fairly general
and should be applicable in a static context as well. In
the static analysis case, we assume a complete and correct
static disassembly of the program such that a control flow
graph of the program can be built. This assumption may not
always hold in general, but the problem of static disassembly
of assembly code is outside the scope of our work. For
example, our current research focuses on malware. However,
many instances of malware incorporate self-modifying code
into their protections, which render standard static analysis
ineffective.

An important requirement of our system is the ability to
have distinct names for the values of a variable at different
points in the program. In the dynamic analysis case, we
did this using the order number of each instruction. For
the static analysis case, we can obtain a similar effect by
converting the code to static single assignment (SSA) form
[7]. SSA form creates a unique instance of a variable for
each definition, so that in the code, the location of the
definition of every use of a variable is known. This is
typically accomplished in SSA by assigning a variable name
for each definition that consists of the variable name from
the original code concatenated with a unique number. So,
just as we used the order number of the dynamic trace to
allow for unique equations in the dynamic implementation,
we use SSA form, and its unique variable names to guarantee
that our set of equations is referentially transparent.

A second requirement is the need to determine the pos-
sible referents of indirect memory accesses. In the dynamic
case discussed here, the runtime register values associated
with each instruction in the trace allow us to identify the
specific memory locations accessed by any instruction. In
the static analysis case, the corresponding information has
to be obtained using pointer analysis [8].

We return to our motivating example from section II. We
argued that it may be helpful to know something about the
values that were being compared at the end of the routine in
Figure 1. If we apply SSA form to the code in our example,
and perform our analysis by hand, we get the following
results. At the point of conditional jump, ch is a constant

value. That is, it has not been changed by the code we are
analyzing. For al at the point of the conditional branch, we
get the expression

Restrict(inidx(dxconst), 01) & clconst.

In short, it is the lower 8 bits of the value read from the
device (i.e., the inidx function call) and’ed with the value
of the cl register at the begininng of the code. In other
words, if the least significant 8 bytes we read from the device
are equal to the value we started with in the cl register, it
is not an “S3” device. This matches very closely with the
apparent intent of the code provided by the programmer in
the code comments.

B. Other Considerations

The discussion of expression simplification in Section
III.A.4 effectively describes a term-rewriting system. It is
therefore reasonable to ask whether the result of simpli-
fying an expression using our equations is guaranteed to
be unique—in other words, whether the rewrite system
is Church-Rosser, or confluent. The focus of the work
described in this paper is on low-level issues specific to rea-
soning about assembly code, such as register-name aliasing,
indirect memory accesses, condition-code flags, etc.; issues
of confluence are somewhat orthogonal to this focus and so
are not addressed here. In principle, one could apply Knuth-
Bendix completion [9] to the rewrite rules we use in order
to obtain a confluent rewriting system. This issue has been
discussed by Walenstein et al. [10].

VI. RELATED WORK

Equational reasoning has been applied to many problems
in software analysis, such as certifying properties of a
functional program [11], linking first class primitive modules
[12], and rewriting Haskell fragments [13].

The analysis of assembly code is well studied. Walenstein,
et al. used term rewriting for normalizing metamorphic
variants of viruses and other malicious code [10]. This work
deals specifically with identifying semantics-preserving x86
code transformations performed by the malware and does
not address analysis of the code in general. Leroy em-
ployed equational reasoning to verify PowerPC assembly
generated by CompCert compiler [14]. Similar RTL-style
representation has been used [15] to improve disassembly by
identifying indirect jumps to function calls. There are other
examples as well [16]–[19]. However, we are not aware of
any such work using equational reasoning techniques.

Our work is similar in some aspects to the formal ver-
ification work of Magnus Myreen [20], though his work
is concerned with verification of code, and ours is geared
towards understanding behavior. Our approach is also simi-
lar, in principle, to symbolic execution techniques [21], [22].
However, symbolic execution typically does not address low
level issues such as x86 register-level aliasing.

VII. CONCLUSIONS

Library binaries, handwritten assembly for architecture-
specific needs, and malicious code are just a few examples
of cases where there is a need for program understanding,
but where no high-level source is available for analysis. We
present an equational reasoning system specifically designed
to handle the unique issues associated with x86 assembly –
a common instruction set architecture – and can be used
in static or dynamic contexts. Our system can create an
expression to represent any variable at any point in the code,
and can simplify this equation for the purpose of making it
more readable by humans.

We have implemented an automated version of our dy-
namic tool for analyzing 32-bit x86 traces, and have applied
this tool to several dynamic examples. We have also applied
the rules of our system by hand to a static code sample with
known values to demonstrate the possibility of extending
the system to static analyses. The current tool is capable
of processing approximately 218 instructions per second, or
536 equations per second on our test setup. Our system does
not solve all analysis problems, but is one more tool in the
toolbox of researchers and engineers whose job is to analyze
and understand assembly code and executable binaries.

ACKNOWLEDGEMENT

This work was supported in part by the National Science
Foundation via grant no. CNS-1016058, as well as by
a GAANN fellowship from the Department of Education
award no. P200A070545.

REFERENCES

[1] D. Binkley, “Source code analysis: A road map,” in 2007
Future of Software Engineering, ser. FOSE ’07, 2007, pp.
104–119.

[2] A. Dinaburg, P. Royal, M. I. Sharif, and W. Lee, “Ether:
malware analysis via hardware virtualization extensions,” in
Proceedings of the 2008 ACM Conference on Computer and
Communications Security, CCS 2008, Alexandria, Virginia,
USA, October 27-31, 2008, 2008, pp. 51–62.

[3] F. Bellard, “QEMU, a fast and portable dynamic translator,”
in USENIX Annual Technical Conference, FREENIX Track.
USENIX, 2005, pp. 41–46.

[4] IA-32 Intel Architecture Software Developer’s Manual, Vol-
ume 2: Instruction Set Reference, Intel Corp.

[5] Oreans Technologies, “Code virtualizer: Total
obfuscation against reverse engineering,” Dec. 2008,
http://www.oreans.com/codevirtualizer.php.

[6] VMProtect Software, “Vmprotect software protection,” Dec.
2008, http://vmpsoft.com/.

[7] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and
F. K. Zadeck, “Efficiently computing static single assignment
form and the control dependence graph,” ACM Transactions
on Programming Languages and Systems, vol. 13, no. 4, pp.
451–490, Oct. 1991.

[8] G. Balakrishnan, “Wysinwyx: What you see is not what you
execute,” Ph.D. dissertation, Computer Science Department,
University of Wisconsin, Madison, 2007.

[9] D. E. Knuth and P. Bendix, “Simple word problems in
universal algebras,” in Computational Problems in Abstract
Algebra, J. Leech, Ed. Pergamon Press, 1970, pp. 263–297.

[10] A. Walenstein, R. Mathur, M. R. Chouchane, and A. Lakhotia,
“Normalizing metamorphic malware using term rewriting,”
in Proceedings of the Sixth IEEE International Workshop on
Source Code Analysis and Manipulation, 2006, pp. 75–84.

[11] J. S. Jorge, V. M. Gulias, and J. L. Freire, “Certifying
properties of an efficient functional program for computing
Gröbner bases,” J. Symb. Comput., vol. 44, pp. 571–582, May
2009.

[12] J. B. Wells and R. Vestergaard, “Equational reasoning for
linking with first-class primitive modules,” in Proceedings
of the 9th European Symposium on Programming Languages
and Systems, ser. ESOP ’00, 2000, pp. 412–428.

[13] A. Gill, “Introducing the haskell equational reasoning assis-
tant,” in Proceedings of the 2006 ACM SIGPLAN workshop
on Haskell, ser. Haskell ’06, 2006, pp. 108–109.

[14] X. Leroy, “Formal verification of a realistic compiler,” Com-
mun. ACM, vol. 52, pp. 107–115, July 2009.

[15] J. Kinder and H. Veith, “Jakstab: A static analysis platform for
binaries,” in Proceedings of the 20th international conference
on Computer Aided Verification, ser. CAV ’08, 2008, pp. 423–
427.

[16] L. Djoudi and L. Kloul, “Assembly code analysis using
stochastic process algebra,” in Proceedings of the 5th Eu-
ropean Performance Engineering Workshop on Computer
Performance Engineering, ser. EPEW ’08, 2008, pp. 95–109.

[17] J. Brauer, B. Schlich, T. Reinbacher, and S. Kowalewski,
“Stack bounds analysis for microcontroller assembly code,”
in Proceedings of the 4th Workshop on Embedded Systems
Security, ser. WESS ’09, 2009, pp. 5:1–5:9.

[18] R. Venkitaraman and G. Gupta, “Static program analysis
of embedded executable assembly code,” in Proceedings of
the 2004 international conference on Compilers, architecture,
and synthesis for embedded systems, ser. CASES ’04, 2004,
pp. 157–166.

[19] A. Wolfram, P. Braun, F. Thomasset, and E. Zehendner,
“Data dependence analysis of assembly code,” Int. J. Parallel
Program., vol. 28, pp. 431–467, October 2000.

[20] M. Myreen, Formal Verification of Machine-code Programs,
ser. Distinguished Dissertation Series. British Computer
Society, The, 2011. [Online]. Available: http://books.google.
com/books?id=jyDvtgAACAAJ

[21] J. C. King, “Symbolic execution and program testing,” Com-
mun. ACM, vol. 19, pp. 385–394, July 1976.

[22] A. Coen-Porisini, G. Denaro, C. Ghezzi, and M. Pezzé, “Us-
ing symbolic execution for verifying safety-critical systems,”
in Proceedings of the 8th European software engineering, ser.
ESEC/FSE-9, 2001, pp. 142–151.

