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Abstract. Interpreters and just-in-time (JIT) compilers are ubiquitous
in modern computer systems, making it important to have good program
analyses for reasoning about such systems. Control dependence, which
plays a fundamental role in a number of program analyses, is an impor-
tant contender in this regard. Existing algorithms for (dynamic) control
dependence analysis do not take into account some important runtime
characteristics of interpretive computations, and as a result produce
results that may be imprecise and/or unsound. This paper describes a
new notion of control dependence and analysis algorithm for interpre-
tive systems. This significantly improves dynamic control dependence
information, with corresponding improvements in client analyses such
as dynamic program slicing and reverse engineering. To the best of our
knowledge, this is the first proposal to reason about low-level dynamic
control dependencies in interpretive systems in the presence of dynamic
code generation and optimization.

1 Introduction

Interpretive systems—interpreters, often accompanied by dynamic code trans-
formation via just-in-time (JIT) compilers, together with input programs—are
ubiquitous in modern computer systems. Their ubiquity and complexity make
it important to devise algorithms to reason about such systems. An especially
important analysis in this context is that of control dependence, which specifies
whether or not one statement in a program controls the execution of some other
statement. Control dependence analysis plays a fundamental role in a number of
important program analyses and applications, including code optimization [16],
program parallelization [28,31], program slicing [35,24,33], and information flow
analysis [14,27].

This paper is concerned with low-level reasoning about control dependencies
during an execution of an interpretive system. There are several reasons for
considering the system holistically in this manner. The first is that the behavior
of such systems is intimately tied to the control flow logic of both the interpreter
and the interpreted program as well as the optimization logic of the JIT compiler.
Second, in the presence of JIT compilation, a complete and accurate understanding
of the execution behavior of such a system necessarily requires a low-level analysis
at the level of IR or machine instructions, including instructions that may be
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dynamically generated or modified (cf. Balakrishnan’s work showing that source-
level reasoning may not suffice for understanding low-level program behavior [6],
which applies even more strongly to dynamically modified code).

Unfortunately, classical notions of control dependence are not very helpful for
such reasoning about the execution behavior of interpretive systems; interactions
between the interpreted program, the interpreter, and the JIT compiler; and
code generated or modified dynamically. As a result, existing control dependence
analyses produce results that can be imprecise when reasoning about the low-
level behavior of such systems, including in particular input-specific interactions
between the interpreter and JIT compiler (such interactions can give rise to bugs
that can be difficult to track down [34,10]). The widespread use of interpreters
and interpretive systems makes this a highly problematic situation. This paper
takes a step towards addressing this problem by proposing an improved approach
to control dependence analysis for interpretive systems.

This paper makes the following technical contributions. First, it identifies an
important shortcoming of existing control dependence analyses in the context
of modern interpretive systems. Second, it extends the classical notion of con-
trol dependence to interpretive systems in a way that handles a wide class of
dynamic optimizations cleanly and uniformly. Experiments using a prototype
implementation of our ideas, built on top of a Python system equipped with
an LLVM-based back-end JIT compiler[36], show that our notion of control
dependence significantly improves the results for client analyses such as dynamic
program slicing. To the best of our knowledge, this is the first proposal to reason
about low-level dynamic control dependencies in interpretive systems in the
presence of dynamic code generation and optimization.

The rest of the paper is organized as follows: Section 2 discusses some back-
grounds and motivating example. Section 3 discusses terminology and notation
as well as the traditional notion of the control dependency. Section 4 presents
our ideas and algorithms to handle control dependencies in the interpreters.
This is followed by implementation details in Section 5 with evaluations and
experimental results in Section 6. Section 7 discusses related work followed by
conclusions in Section 8.

2 Background and Motivation

2.1 Interpreters

An interpreter implements a virtual machine (VM) in software. Programs are
expressed in the instruction set of the VM, and encoded in a manner determined
by the interpreter’s architecture (e.g., byte-code, direct-threaded). Each operation
x in the VM’s instruction set is processed within the interpreter using a fragment
of code called the handler for x (written handler(x )). The interpreter uses a
virtual instruction pointer (vip) to access successive VM instructions in the input
program and a dispatch routine to transfer control to appropriate handler code.

An interpreter must accommodate all control flow behaviors possible for all
of its input programs despite having a fixed control flow graph itself. This is



Control Dependencies in Interpretive Systems 3

done by transforming control dependencies to data dependencies through vip and
controlling the execution by appropriately updating the vip value for the next
VM instruction that should be executed. Control then goes from the handler
to the dispatch code, which uses the updated vipto fetch the appropriate next
VM instruction. In other words, control flow in the input program is handled via
updates to vipwithin the interpreter dependeing on the semantics of the executed
byte-code. As a result, control dependencies in the input program are transformed
into data dependencies through vipin the interpreter’s execution. This also means
that the handlers are no longer control dependent on each other, but rather are
all control dependent on the dispatch code.

2.2 JIT Compilation

Just-in-time (JIT) compilers are widely used in conjunction with interpreters to
improve performance by compiling selected portions of the interpreted program
into (optimized) code at runtime.

While the specifics vary from one system to another, the general idea is to
use runtime profiling to identify frequently-executed fragments of code, then—
once one or more such fragments are considered to be “hot enough”—to apply
optimization transformations to improve the code. The very first such optimization
is to transform the code from an interpreted representation, such as byte code, into
native code. Some JIT compilers support multiple levels of runtime optimization,
where the dynamically created code can be subjected to additional optimization
if this is deemed profitable [30]. We refer to such dynamically-generated native
code as “JITted code.’’

For our purposes, JIT compilation can be seen as a sequence of alternations
between two phases: execution, where code from the input program—which may
or may not include previously JITted code—is executed; and optimization, where
code transformations are applied to hot code to improve its quality. We refer to
each such optimization phase as a round of JIT compilation.

2.3 Motivating Example

Dynamic slicing is helpful for fault location in debugging [38]. For simplicity we
consider a small interpreter containing an obvious bug; in practice, interpreters are
usually much larger and more complex, and even more so when JIT compilation
is included.

Consider the backward program slicing problem [24,2] posed for a simple
interpreter, shown in Figure 1(b), executing the input program in Figure 1(a).
Figure 1(c) shows the dynamic dependence graph (DDG) over the execution
instances of the interpreter in Figure 1(b) with the input program in Figure 1(a)
with an input other than 5. The nodes in the DDG graph represent execution
instances of the statements in the interpreter program of Figure 1(b). Each node
in the DDG graph contains a pair <first,second> where first corresponds to
the statement in the interpreter code and second corresponds to the line number
in the input program of Figure 1(a) that caused the first to be executed in the
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1 : n =
input ( )

2 : y = 1
3 : x = 1
4 : i f n != 5
5 : y = 6
6 : i f n == 5
7 : x = 5
8 : p r i n t x
9 : ha l t

I1 : vip = 0 ;
I2 : while ( t rue )
I3 : op0 , op1 , dest =

GetOperands ( vip )
I4 : switch ( InputPgm [ vip ++])

case ASSIGNMENT:
I5 : ∗op1 = op0

break
case IF EQ :
/∗== should be !=∗/

I6 : i f ( op0 == op1 )
I7 : vip = dest

break
case IF NOT EQ :

I8 : i f ( op0 == op1 )
I9 : vip = dest

break
case PRINT:

I10 : p r i n t ( op0 )
break

case INPUT:
I11 : ∗op0 = input ( )

break
case HALT:

I12 : e x i t ( )

<I1,1>

<I2,1> <I4,1> <I3,1> <I11,1>

<I3,2><I4,2><I2,2> <I5,2>

<I3,3><I4,3><I2,3> <I5,3>

<I3,4><I4,4><I2,4> <I8,4>

<I3,5><I4,5>

<I9,4>

<I2,5> <I5,5>

<I3,6><I4,6><I2,6> <I6,6>

<I3,7><I4,7>

<I7,6>

<I2,7> <I5,7>

<I3,8><I4,8><I2,8> <I10,8>

<I3,9><I4,9><I2,9> <I12,9>

(a) An input

program

(b) A simple interpreter

program

(c) DDG of the the interpreter in (b)

interpreting input program (a)

Fig. 1. A motivating example

interpreter. Dashed edges in the graph show the control dependencies between
statements in the code; solid edges show the data dependency and bold nodes
represent the program statements that were included in the computed program
slice. Gray nodes represent those statements that did not execute in this particular
execution. We want to compute a slice with the criterion (8, x) of the input
program in Figure 1.

There is a bug in the interpreter at I6 where the predicate for the conditional
operator is wrong. Applying the slicing algorithm on the input program will
correctly include lines 7, 6 and 1 in the slice because indeed the value of x at
line 8 depends on all those statements. Suppose we want to do the slicing on
machine level instructions executed by the interpreter, using dynamic program
slicing algorithm [2] with the slicing criterion (I10, op0). The algorithm starts
from the node <I10,8> of the DDG that is the interpreter’s code implementing
the call to the print function of the input program. Nodes that are included in
the program slice are made bold. According to the input program, node <I6,6>

should be included because of a control dependency between lines 6 and 7 of the
input program. However, this control dependence edge is missing in the DDG of
the interpreter because I5 is not control dependent on I6 in the interpreter and
so <I6,6> is not included in the computed slice.

Relevant slicing [3]—which includes predicates that did not affect the output
but could have affected it were they evaluated differently—can improve slicing
results where execution omission causes broken dependencies. Using relevant
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slicing, node <I6,6> will be included in the slice because <I7,6> could have
affected the output. However, for the same reason, node <I8,4> will also be
included in the slice (the predicate at line 4 of the input program) because of
node <I9,4>. So although relevant slicing helps including the missing statements
in the slice computed by dynamic program slicing, it also includes irrelevant
statements because of the data dependencies carried over the whole program by
vipand this increases the size of the slice significantly for programs with larger
sizes.

3 Terminology and Notation

Interpreters on modern computer systems often work in close concert with just-
in-time (JIT) compilers to execute input programs.1 To emphasize this, we
refer to the combination of an interpreter and an associated JIT compiler as an
interpretive system: an interpretive system with interpreter I and JIT compiler
J is denoted by I(I,J); where the interpreter and JIT compiler are clear from
the context, or do not need to be referred to explicitly, we sometimes write the
interpretive system as I. The set of all possible execution traces of an interpretive
system I on an input program P is denoted by I(P ).

We assume a sequential model of execution. An execution trace for a program
P is the sequence of (machine-level) instructions encountered when P is executed
with some given input. A dynamic instance of an instruction x in an execution
refers to x together with the runtime values of its operands at some specific point
in the execution when x is executed. An instruction x in the static code for P
may correspond to many different dynamic instances in an execution trace for P
(e.g., if x occurs in a loop); where necessary to avoid confusion, we use positional
subscripts such as xm, to refer to a particular dynamic instance of an instruction
x. We use ≺ to denote the sequential ordering on the instructions in a trace:
thus, x ≺ y denotes that x is executed before y.

The idea of control dependence characterizes when one instruction controls
whether or not another instruction is executed. This notion is defined formally
as follows [16]:

Definition 1. Static Control Dependence: y is statically control dependent

on x in a given control flow graph G (written y
static(G)−−−→ x) if and only if:

1. there is a path π in G from x to y such that for every z on π (z 6= x, y), y
post-dominates z; and

2. y does not post-dominate x in G.

In addition to static control dependency which reasons about the program
statically, Dynamic Control Dependence [37] reasons about control dependencies
between program statements over a particular execution of the program.

1 There may be additional software components in the runtime system, e.g., a profiler
to identify hot code that should be JIT-compiled, a garbage collector, etc. For the
purposes of this paper we focus on the interpreter and the JIT compiler.
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Definition 2. Dynamic Control Dependence: yn is dynamically control
dependent on xm in a given execution trace and control flow graph G (written

as yn
dynamic(G)−−−−−→ xm) if and only if: (i) xm ≺ yn; (ii) yn

static(G)−−−→ xm; and (iii)

for all zk such that xm ≺ zk ≺ yn it is the case that zk
static(G)−−−→ xm.

The intuition here is that if y is control dependent on x, statically or dynami-
cally, then one control flow successor of x always leads to y while the other may
or may not lead to y.

Control dependence is, intuitively, a dynamic property, typically phrased
informally as “one statement (or instruction) controlling whether another is
executed.” The reformulation of this dynamic property in terms of the structure of
a static control flow graph, as in the definitions given above, rests on two implicit
assumptions. The first, which we refer to as the realizable paths assumption,
assumes that all “realizable” paths in a program—i.e., all paths subject to
the constraint that procedure calls are matched up correctly with returns—are
executable; or, equivalently, that either branch of any conditional can always be
executed. This assumption, which Barth refers to as “precision up to symbolic
execution” [8], is standard in the program analysis literature and is fundamental
to sidestepping the undecidability problems arising from Rice’s Theorem [20].
The second assumption is that the static control flow graph of the program
contains all of the control flow logic of the computation.

The first of these two assumptions is arguably applicable to interpreters and
interpretive systems. However, the second assumption does not hold in interpretive
systems. There are two reasons for this: first, the logic of the input program
necessarily influences the control flow behavior of an interpreter’s computation;
and second, JIT compilation can introduce new code at runtime whose control
flow behavior is not accounted for in such definitions.

4 Control Dependence in Interpretive Systems

4.1 Semantic Control Dependency

To account for these aspects of interpretive computations that are problematic
for the traditional notion of control dependency, we adapt the notion of control
dependency in two ways. First, instead of considering all possible executions of
the interpreter on all possible input programs—which is what we get from the
traditional notion of control dependence applied to the control flow graph of the
interpreter—we focus on all possible executions of the interpreter for a given
input program being interpreted; this is helpful in our context because our goal
is to improve the results of dynamic analyses of interpretive systems. Second,
instead of tying our notion of control dependence to a fixed static control flow
graph—an approach that does not work in the presence of dynamically generated
code—we give a semantic definition in terms of execution traces.

Definition 3. Semantic Control Dependence: Given an interpretive system
I and an input program P , let xm and yn be dynamic instances of instructions
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x

z

y

All control flow paths

containing x

for any path π through both x and

y and for any z on π (z 6= x and

z 6= y), y occurs after z i.e., y post-

dominates zthere exist control flow

paths passing through

x but not y i.e., y does

not post-dominate x

(a)

xm

zk

yn

Sxm = all execution traces

containing xm

S+
xm

= set of execution traces

passing through both xm and yn,

∀T ∈ S+
xm
∀zk ∈ T (zk 6= xm and

zk 6= yn), yn occurs after zkthere exist execution

traces containing xm

but not yn, i.e., S−xm
is

non empty

(b)

Fig. 2. Parallels between Static and Semantic Control Dependence; (a) Static control
dependence; (b) Semantic control dependence

on some execution of I(P ) such that xm ≺ yn. Let Sxm
⊆ I(P ) be the set of

all execution traces in I(P ) that contain the instruction instance xm. Then yn

is semantically control dependent on xm (written yn
semantic−−−→ xm) if and only

if Sxm
can be partitioned into two nonempty sets S+

xm
and S−xm

satisfying the
following:

1. yn ∈ S+
xm

and yn 6∈ S−xm

2. ∀zk such that xm ≺ zk ≺ yn, zk ∈ S+
xm

and zk 6∈ S−xm

This definition parallels the traditional definition of control dependence, as shown
in Figure 2. The notion of static control dependence (Definition 1), shown in
Figure 2(a), uses the structure of the static control flow graph of the program to
express the idea that, in the static program code, when we consider the control
flow paths that contain x, some execution paths from x lead to y while others
do not. Figure 2(b) uses the notion of execution traces—the dynamic analogue
of control flow paths—to express the idea, in the dynamic program code, when
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we consider the set of execution traces that contain xm, some traces from xm
lead to yn while others do not; here, S+

xm
denotes the set of execution traces that

lead from xm to yn while S−xm
denotes those that do not.

This notion of semantic control dependence differs from the traditional notion
of static control dependence in two crucial respects. First, it takes into account
both the interpretive system I and the input program P . Second, it is not tied
to a fixed static control flow graph and therefore can be used for situations, such
as with JIT compilers, where the code executed changes at runtime.

Definition 3 is not computable as stated and so cannot be embedded directly
into an algorithm for computing control dependencies. Instead, we use this
definition to reason about the soundness of our approach by showing that,
considered in conjunction with the realizable paths assumption, it specifies
exactly the set of control dependencies that is computed by our definition.

4.2 Interpretive Control Dependencies

We use a mechanism called instruction origin functions to incorporate control
dependence information from the input program into the determination of control
dependencies in the (low-level) execution trace. The essential intuition here is
as follows. Suppose that, for each instruction Q in the input program, we can
determine the set of instructions in the interpreter implementing handler(Q),
then the instruction origin function maps x to the input program instruction Q
that x “originated from” if one exists; and ⊥ (denoting “undefined”) otherwise.
More formally:

Definition 4. Given an instruction x in the execution of an interpreter, an
instruction origin function Γ is defined as:

Γ (x) =


Q

if there exists an instruction Q in the input program
such that x ∈ handler(Q);

⊥ otherwise

Conceptually, Γ can be thought of in terms of labels associated with instruc-
tions in the input program that are propagated into the interpreter code, with the
handler code in the interpreter getting labeled with the label of the instruction it
handles. Γ is a many-to-one mapping of dynamic executed instances of instruc-
tions to static instructions in the input program. An instruction Q in the input
program may be used in different places in the code, resulting in handler(Q)
getting executed multiple times. In this case Γ maps each executed interpreter
instruction to the appropriate instruction in the input program. Moreover, if input
program instruction Q causes handler(Q) to be executed multiple times (e.g. a
loop in the input program), they are all mapped to the same input instruction.

Given an execution trace of an interpretive system I on an input program P ,
in order to reason about the control flow influences due to the computational
logic of both I and P , we define a notion of interpretive control dependence
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(“i-control-dependence” for short) that combines control dependence information
from I and P and any code that may be dynamically created/modified by the
JIT compiler (if any):

Definition 5. i-control-Dependence: Given an interpretive system I and an
input program P , let xm and yn be dynamic instances of instructions on some
execution of I(P ) with k rounds of JIT compilation such that xm ≺ yn and let Ji

be the JITted code added at round i of JIT compilation. We define yn
interp−−→ xm

if either one of the following hold:

1. both xm and yn are in JITted code, i.e., ∃i ≤ k : xm, yn ∈ Ji, and

yn
dynamic(Ji)−−−−−→ xm; or

2. at least one of xm and yn is not in JITted code, and either yn
dynamic(I)−−−−→

xm or Γ (yn)
static(P )−−−→ Γ (xm).

The notion of i-control-dependency uses the idea of dynamic control dependence
to capture the control dependencies between interpreter instructions and JITted
code. However, previously defined notions of control dependencies cannot be
applied directly to capture the logic of the input program. To capture the control
dependencies resulting from the control flow logic of the input program in both
the interpreter code and JITted instructions, i-control-dependency uses the origin
function. The intuition is that for input program instructions Q and R in P

where R
static(P )−−−→ Q, if there are instructions x and y in the execution trace

such that Γ (xm) = Q and Γ (yn) = R, then the execution of yn depends on the
execution of xm and hence they are semantically control dependent but this can
not be inferred by only looking at the CFG of the interpreter. The reason is that
xm and yn belong to handlers of the interpreter which are not control dependent
according to the interpreter’s CFG.

Since JITted code executes natively without any interpretation, in the case
where xm, yn ∈ Ji, i-control-dependency uses the standard notion of control
dependency (through the CFG of Ji) to identify control dependencies between
them. This allows i-control-dependency to handle situations where the JIT-
compiler transformations may not preserve control dependence relationships in
the input program (e.g., loop unrolling, loop permutation). However, if one of
the instructions belongs to I and the other belongs to Ji, it is still required to
use Γ to look up control dependencies in the input program.

The reason for using the static control dependence definition for the input
program P is that the function Γ maps instructions in the execution trace to static
instructions in the input program, not their execution instances. Static control
dependencies can be computed from the static CFG of the input program and
given an execution trace in I(P ), dynamic control dependencies for interpreter
instructions can be computed using the CFG of the interpreter and Definition 2.
Likewise for JITted instructions, dynamic control dependencies can be computed
by the CFG of the created code at runtime.
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The relationship
dynamic(I)−−−−→ contains all the control dependencies in the

interpreter code and the runtime generated JITted code that are computed using

the standard notion of control dependency, i.e., yn
dynamic(I)−−−−→ xm means that

for xm, yn ∈ I; or, for x, y ∈ Ji, yn is dynamically control dependent on xm; the
former using the CFG of the interpreter and the latter from CFG of the runtime
generated code.

We next give a soundness result for the notion of i-control-dependence: namely,
that under the realizable-paths assumption in program analysis, the notion of
i-control-dependence is identical to that of semantic control dependence.

Lemma 1. Given an interpretive system I and an input program P that both
satisfy the realizable paths assumption, let xm and yn be instructions in an

execution trace in I(P ). Then, yn
semantic−−−→xm implies yn

interp−−→xm.

Proof. By induction on the number of rounds k ≥ 0 of JIT compilation.

Lemma 2. Given an interpretive system I and an input program P that both
satisfy the realizable paths assumption, let xm and yn be dynamic instances

of instructions in an execution trace in I(P ). Then, yn
interp−−→xm implies yn

semantic−−−→xm.

Proof. From definition 5, yn
interp−−→xm implies that either (1) yn

dynamic(I)−−−−→ xm;

(2) yn
dynamic(J)−−−−→ xm; or (3) Γ (yn)

static(P )−−−→ Γ (xm). In the first two cases, the
lemma follows from the definition of dynamic control dependence (Definition 2)
applied to the code of the interpreter or the JITted code; In the second case, we
use the definition of Γ to apply the definition of static control dependence to the
input program.

The following result is now immediate.

Theorem 1. Given an interpretive system I and an input program P that both
satisfy the realizable paths assumption, let xm and yn be instructions in an

execution trace in I(P ). Then, yn
interp−−→ xm if and only if yn

semantic−−−→xm.

5 Implementation

We have implemented a prototype of our control dependence analysis algorithm in
the context of the Unladen-swallowimplementation of Python [36], an open-source
integration of a Python interpreter with a JIT compiler. Unladen-swallowuses
the LLVM compiler framework [25] to dynamically map frequently executed
code to LLVM-IR, which is then optimized and written out as JIT-compiled
native code. Unladen-swallowwas chosen because it is built up on two popular
components, Python interpreter and LLVM compiler that are widely used both by
researchers and in industry. Furthermore, Unladen-swallowprovides mechanisms
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to control the JIT compiler behavior from the input program, e.g. forcing the
JIT compilation of a piece of code, that simplifies the evaluation.

To obtain the CFG of the interpreter, we disassemble2 the interpreter (CPython)
and reconstruct its control flow graph, from which we compute (intra-procedural)
control dependencies in the interpreter and the JIT compiler. To simplify the
implementation effort of our prototype, our current implementation treats the
LLVM code generator as an external library that is not included in this control
flow graph; this is simply for convenience and there is nothing precluding the
inclusion of the LLVM libraries if so desired.

To identify control dependencies among the native code instructions, we use
the CFG of the byte-code produced by the CPython compiler and mark the
instructions in the execution trace. We instrumented the LLVM back-end JIT
compiler to produce CFG of the compiled code that can be used to identify
control dependencies among the JITted instructions.

Usually debug information is enough to compute the Γ function to map the
executed instructions to the VM byte-codes in the input program. Interpreters, as
well as JIT compilers, need to keep some debug information that relates executed
instructions to the source program statements to make step-by-step debugging
possible. In order to do this, an interpreter needs to keep information about
the source program to individual byte-codes, and so for each handler code, the
information about the source is accessible through these debug information.

We have instrumented the CPython compiler used in Unladen-swallowto
produce and emit control flow graph of the byte-coded input program. Moreover,
specific parts in the interpreter handlers that implement control flow transfers in
the input program were marked to map conditional jumps in the input program
(bytecode) to the machine-level instructions. This helps identifying the actual
predicates and control transfer instructions in the execution trace when a basic
block in the input program is found control dependent on another one. This was
a matter of simplicity and convenience, and is not in any way fundamental to the
ideas presented here: other approaches, e.g., reverse engineering the byte code
obtained from the front-end compiler, e.g. see [29], would have produced exactly
the same results. The modified interpreter inserts markers at the beginning
of each basic block where we can map instructions in the execution trace to
basic blocks in the input program. This information combined with the mapping
information allows us to find the control dependencies in the input program.

For the JIT compiler, on the other hand, we instrumented the LLVM back-end
to generate the CFG of the dynamically generated native code. We cannot rely
on debug information to extract control dependencies in the JITted code because
the JIT compiler’s transformations may not preserve control dependencies from
the original code. The safest option is to have the JIT compiler dump the CFG
of the compiled code and use that to identify control dependencies. We modified

2 We currently use the objdump utility for disassembly, invoking it as ‘objdump
--disassemble --source’; however, any other disassembler would work. The
‘--source’ option allows us to identify control flow targets for indirect jumps corre-
sponding to switch statements.
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the LLVM compiler to dump the CFG for the native code that is produced in
the last step. This did not require more than 20 lines of code since the compiler
needs to produce the CFG anyway and we just dumped this information.

6 Experimental Results

We evaluated our idea of control dependency presented in this paper using
dynamic program slicing by applying the i-control-dependency notion discussed
in 4.2. Our experiments were performed on a machine with 2 × 2.60 GHz six-core
Intel Xeon processors with 64GB of RAM running Ubuntu. We used a tracing
tool built on top of Pin [26] to collect execution traces. The tracing tool records
each instruction with some runtime information such as instruction address.

Two crucial properties of a desired program slice is to include the buggy parts
of the code in the slice while keeping the slice size minimal. To evaluate the effects
of our notion of control dependency, we apply dynamic program slicing algorithm
where the control dependencies are computed using 1) i-control-dependence,
and 2) standard control dependence. For the first approach, our dynamic slicing
algorithm ignores the data dependencies caused by the vipof the interpreter.

Each experiment was done for two execution modes: Pure Interpreter and
Interpreter Plus JIT. In Pure Interpreter mode, the input program was only
interpreted whereas in the Interpreter Plus JIT execution mode, all or some part
of the input program was JITted. Our hypothesis is that slices computed using
standard notion of control dependencies may be incorrect due to missed control
dependencies in the input program while being larger mainly due to spurious
data dependencies though the vip. We used a prototype implementation described
in Section 5 and ran experiments on a collection of Python programs including
three samples resembling already known bugs both in the interpreter and the
JIT compiler, as well as five Python scripts taken from standard Python libraries
that are included in the Python distributed package.

6.1 Buggy Samples

From three buggy samples, two of them are reported in the Python bug tracking
system at http://bugs.python.org/3 and the third one is adapted from a
reported bug in C# JIT compiler.4 All the three samples have a common
characteristic where the wrong behavior is because of a bug in the interpreter
or the JIT compiler that is only triggered by a particular input program. We
constructed examples of the bugs and executed them with the Python interpreter
used in Unladen-swallow. For the Interpreter Plus JIT experiment, we annotated
the code triggering the bug so as to force it to be JITted at runtime. The samples
are representative of a class of issues that may arise due to the imprecision of
the analysis discussed in this paper and share similar characteristics. The goal of

3 Issues 4296 and 3720 can be found at http://bugs.python.org/issue4296 and
http://bugs.python.org/issue3720 respectively.

4 https://www.infoq.com/news/2015/07/NET46-bug2

http://bugs.python.org/
http://bugs.python.org/issue4296
http://bugs.python.org/issue3720
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the experiment is to use dynamic program slicing from the point in the program
where the wrong behavior is observed and determine whether the buggy code
(either in the interpreter or in the JIT compiler) is included in the slice or not.

Table 1 presents the slicing results for the all the three buggy samples. The
first two rows show the slicing results for the Pure Interpreter execution mode.
As it can be seen from the table, for the two issues we examined, the slicing
algorithm based on control dependencies computed with traditional definitions
failed to include the sources of the bugs in the program slice because of missing
control dependencies in the input program that was necessary to accurately pin
down the bug. In the contrary, using i-control-dependency for interpreters, slicing
algorithm was able to realize precise dependencies which resulted in the sources
of the bug being included in the computed slice.

Issue No. Trace size Std Control Dependency i-Control-Dependency
Exec. Mode (bug id.) (instrs) Slice size Bug found Slice size Bug found

Pure Interpreter
python-3720 11,837 265 (2.23%) × 192 (1.62%) X
python-4296 6,028 318 (5.27%) × 222 (3.68%) X

Interpreter+JIT
python-3720 248,816 258 (0.10%) × 22,769 (9.15%) X
python-4296 269,928 21,924 (8.12%) × 19,861 (7.35%) X
C#-1299 259,802 269 (0.10%) × 20,608 (7.93%) X

Table 1. Program slicing results

The last three rows show the slicing results where the buggy code is JITted
during the execution. For the two Python bugs, the actual bug is in the runtime
prodcuced (JITted) code because the bug is in the interpreter, but the JITted
code make calls to the interpreter. For the third sample, the bug is in the JIT
compiler so an accurate slicing algorithm should include the compiler code that
produces wrong result. As it can be seen from the table, the slicing algorithm
using standard notion of control dependency fails to include those parts of the
JITted code or the compilation step where the source of the bug is. This is
because of missing control dependencies in the runtime generated JIT code.
With standard control dependence analysis, the slicing algorithm is only able to
identify data dependencies in the JITted code. i-control-dependency helps slicing
algorithm to include the bug in the slice.

Table 1 also shows the size of the computed slices for both slicing algorithms.
The sizes are given in both raw instruction numbers and normalized to the size
of the code observed in the execution trace. Since we are computing dynamic
program slice, the size of the static code that was observed in the execution
trace was considered as the program size. It can be seen that the slice sizes
using i-control-dependence are smaller. So although our definition adds more
control dependencies coming from the input program, it prevents spurious and
unnecessary data dependencies due to the vipto pollute the slicing results.

6.2 Python Library Samples

The second experiment involves five python scripts taken from widely used Python
libraries found in their distribution package:
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– binhex: is a module to encode and decode files in binhex4 format
– socket: provides a low-level networking interface
– zipfile: is a module to manipulate files in ZIP format
– StringIO: provides a file-like class to read/write string buffers
– HTMLParser: is a simple HTML and XML parser library

All the above samples have significantly large and complex logic. We used
these samples to show how commonly the slicing results are computed incorrectly
when applied to an interpreter code or when JIT-compilation is involved. For
each sample we manually marked some variables as the slicing criterion on the
execution trace of the samples and carried out dynamic slicing algorithm starting
from the slice criterion.

Trace size Std Control Dependency i-Control-Dependency
Exec. Mode Program (instrs) Slice size Missed Pred. Slice size

Pure Interpreter

binhex 37,565 4,798 (12.77%) 13 3,561 (09.47%)
socket 47,929 6,307 (13.15%) 13 5,681 (11.85%)
zipfile 63,268 9,636 (15.23%) 17 7,837 (12.38%)
StringIO 20,458 2,458 (12.01%) 10 1,512 (07.39%)
HTMLParser 104,192 21,027 (20.18%) 14 16,637 (15.96%)

Interpreter+JIT

binhex 303,031 27,348 (9.02%) 36 27,906 (09.20%)
socket 342,634 34,655 (10.11%) 1 34,130 (09.96%)
zipfile 337,070 35,215 (10.44%) 68 35,478 (10.52%)
StringIO 295,877 28,013 (09.46%) 30 28,285 (09.55%)
HTMLParser 354,758 41,578 (11.72%) 10 40,921 (11.53%)

Table 2. Program slicing results: pure interpreter

Table 2 presents the slicing results for the samples from the Python library.
Missed predicates column, only given for the dynamic slicing using standard
control dependency, shows the number of predicate instructions included in
the slice computed using i-control-dependency but not included when standard
control dependency was used. The inaccuracy is mainly due to situations similar
to what was shown on Figure 1. For the Pure Interpreter case, missed predicate
column indicates missing control dependencies in the input program that are
reflected in the interpreter code, while for the Interpreter Plus JIT execution
mode it indicates the missing predicates only in the JITted code. The larger the
number of missed predicates is, the less accurate the computed slice is, because in
addition to missing predicates in the slice, data dependencies to these predicates
are also missing which increases the inaccuracy of the slice even more.

Similar to the analysis of buggy samples, the slice sizes are included in
Table 2. As it can be seen from the table, the slicing algorithm based on i-
control-dependency produces smaller slices even though it includes more control
dependencies in the slice, which as mentioned before is mainly due to spurious
data dependencies of the interpreter vip. Smaller slice size difference for the
Interpreter Plus JIT execution mode is because JIT compilation optimizes away
the spurious data dependencies through the vipmaking the resulting slices smaller.

The running time of the analysis mostly depends on the size of the execution
trace . Running time for our three largest traces are 15.12, 37.61 and 201.23
minutes with trace sizes of 423,641,006, 696,851,223 and 1,886,810,614 instructions
respectively. The trace sizes for the Interpreter+JIT case are significantly larger
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than the Interpreter only execution mode which is the reason for the increase in
the analysis running times.

7 Related Work

There is an extensive body of research on control and data dependence analysis,
including: program representations for control and data dependencies [16,21];
frameworks for control dependence analysis [9]; handling control-flow features of
modern program structures and reactive systems [13,4]; and efficient algorithms
and representations for control dependence analysis [12,37]. None of these defini-
tions or systems consider cases where the executing code can change dynamically
due to JIT compiler optimization.

The issue of imprecision of analysis resulting from “overestimation” of control
dependencies, which in the interpretive systems arises from the transformation of
control dependencies in the original program to data dependencies through vip

in the interpreter, has conceptual similarities with problems due to over-tainting
that arise when dealing with implicit flows in the context of dynamic information
flow analysis. The latter problem is discussed by Bao et al. [7] and Kang et al.
[23], who propose algorithms for considering control dependencies selectively,
i.e., disregarding dependencies that do not satisfy certain properties of interest.
High-level conceptual parallels notwithstanding, the details of the problems are
very different from those considered here, as are the proposed solutions.

There is a lot of work on analysis and optimization of interpreters and
interpretive systems, but much of this focuses on individual components of
interpretive systems—e.g., the input program [17,11], the interpreter [15,18], or
the JIT compiler [5,19,1]. Research on partial evaluation has considered the effect
of specializing interpreters with respect to their input programs and shown that
this is essentially equivalent to compiling the input program [22,32].

8 Conclusion

Interpretive systems—the combination of interpreters and JIT compilers—are
ubiquitous in modern software tools and applications. This ubiquity, combined
with their complexity, makes it important to develop good algorithms for rea-
soning about their behavior, in particular with relation to control dependences.
Unfortunately, existing algorithms fall short in this regard. This paper introduces
a notion of “interpretive control dependence” that can be used to reason about
computations of interpretive systems, including code dynamically generated by
the JIT compiler. Experimental results show that this notion leads to significantly
improved precision in client analyses such as dynamic slicing and CFG recovery.
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A Appendix. Proofs of Theorems

Lemma 1. Given an interpretive system I and an input program P that both
satisfy the realizable paths assumption, let xm and yn be instructions in an

execution trace in I(P ). Then, yn
semantic−−−→xm implies yn

interp−−→xm.

Proof. By induction on the number of rounds k ≥ 0 of JIT compilation.

Base case. The base case is for k = 0, i.e., when there is no JIT compilation.

The proof in this case is by contradition. Suppose that yn
semantic−−−→xm and yn

6interp−−→xm. From Definition 5, yn 6interp−−→xm is equivalent to (1) yn 6static(I)−−−→ xm;

and (2) Γ (yn) 6static(P)−−−→ Γ (xm). We consider these two cases separately:

Case 1. For (i), based on Definition 1 if yn 6static(I)−−−→ xm, then xm is post-
dominated by yn in the interpreter I, which means that in every execution
trace of I(P ), either both instructions xm and yn or none of them should be
executed. Combining the realizable paths assumption with Definition 3, this

means that yn 6semantic−−−→ xm.

Case 2. If yn 6static(P)−−−→ xm, then Γ (I) is post-dominated by Γ (yn) in the input
program P . Given the realizable paths assumption, this means that for every
execution of the I(P ), either both Γ (xm) and Γ (yn) (and hence xm and yn)

or none of them should be executed. This simply means that yn 6interp−−→xm
and according to (1) above, yn 6semantic−−−→ xm.

It follows from this that yn 6interp−−→xm implies that yn 6semantic−−−→ xm. This contra-

dicts the hypothesis that yn
semantic−−−→ xm and yn 6interp−−→xm. Thus the theorem

holds.

Inductive case. Assume that the theorem holds after k rounds of JIT-compilation
and consider the program after k+1 rounds of JIT-compilation. Suppose that the
(k + 1)st round of JIT-compilation causes a set of new instructions Jto be added

to the interpretive system.5 Suppose that yn
semantic−−−→xm; we want to establish

that this implies that yn
interp−−→ xm. Depending on which parts of the code xm

and yn belong to, we have the following cases:

1. I 6∈ J and yn 6∈ J, i.e., neither I nor yn were added in the (k + 1)st round of

JIT compilation. It follows from the induction hypothesis that yn
interp−−→I in

this case.
2. xm 6∈ J and yn ∈ J:

5 Some instructions may be removed as well, e.g., because they are dead or unreachable.
However, instructions that are removed in this way will not be considered for any
subsequent control dependence queries, so we do not consider them.
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(a) Γ (xm) 6= ⊥ and Γ (yn) 6= ⊥: this means that xm and yn originated

in the code for instruction handlers in the interpreter. yn 6interp−−→xm
therefore means that Γ (yn) 6static(P)−−−→ Γ (xm). This means that Γ (xm) is
post-dominated by Γ (yn) in the input program. From the realizable paths

assumption, this means that yn 6semantic−−−→ xm. This is a contradiction. We

therefore conclude that yn
interp−−→ xm.

(b) Γ (xm) = ⊥ and Γ (yn) 6= ⊥: since xm 6∈ J, it belongs to the interpreter
code. For the interpreter to transfer control to the JIT-compiled code,
there must be an instruction K in the interpreter that transfers control
to the JIT-compiled code. Given Definition 3 and the realizable paths

assumption, this implies that yn post-dominates K. Suppose yn 6interp−−→xm,

this means that xm 6interp−−→K so for every execution of I(P ), either xm,
K and subsequently yn (because yn post-dominates K) or none of xm,
K and yn are executed together. This is contradictory to the hypothesis

where yn
semantic−−−→ xm thus yn

interp−−→xm holds.

3. xm 6∈ J and yn ∈ J: this is similar to the previous case.
4. xm ∈ J and yn ∈ JThis implies that Γ (xm) 6= ⊥ and Γ (yn) 6= ⊥. Γ (yn)

6static(P)−−−→ Γ (xm). This means that Γ (xm) is post-dominated by Γ (yn) in the

input program, which means that yn 6semantic−−−→ xm. This is a contradiction.

We therefore conclude that yn
interp−−→ xm.

Lemma 2. Given an interpretive system I and an input program P that both
satisfy the realizable paths assumption, let xm and yn be dynamic instances

of instructions in an execution trace in I(P ). Then, yn
interp−−→xm implies yn

semantic−−−→xm.

Proof. From definition 5, yn
interp−−→xm implies that either (1) yn

dynamic(I)−−−−→ xm;

(2) yn
dynamic(J)−−−−→ xm; or (3) Γ (yn)

static(P )−−−→ Γ (xm). In the first two cases, the
lemma follows from the definition of dynamic control dependence (Definition 2)
applied to the code of the interpreter or the JITted code; In the second case, we
use the definition of Γ to apply the definition of static control dependence to

the input program. Based on the Definition 5, yn
interp−−→xm implies that: (1) yn

static(I)−−−→ xm; or (2) Γ (xm)
static(P )−−−→ Γ (yn). We consider each case separately:

Case 1. yn
static(I)−−−→ xm. From the definition of static control dependence (Def-

inition 1), we can conclude two facts:

– From one of the successors of xm—call it namely Cyn—execution will
eventually reach yn; and for all instructions K on paths from xm to
yn through Cyn such that K 6= xm, yn, yn post-dominates K. Let S+

xm
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be the set of execution traces of I(P ) that include xm and Cyn : these
executions necessarily include yn, and since yn post-dominates all of the
other instructions K that lie on paths from xm to yn through Cyn , it
follows that yn occurs after K on each execution trace along these paths.
Finally, from the realizable paths assumption, S+

xm
is non-empty.

– yn may not be executed for the successor(s) of xm other than Cyn . Let
S−xm

be the set of execution traces that do not include Cyn . It follows
that some of these traces do not include yn.

This is equivalent to the definition of semantic control dependency. It follows

that xm
semantic−−−→yn.

Case 2. Suppose that Γ (xm) = xm
′ and Γ (yn) = yn

′ (and so xm ∈ Γ−1(xm
′)

and yn ∈ Γ−1(yn
′)) in the input program. Based on Definition 1, Γ (xm)

static(P )−−−→ Γ (yn) means that in the input program P , for one of the successors
of xm

′, namely Cyn′ , the execution will eventually execute yn
′, and yn

′ is not
executed for other successors of xm

′. Let S+
xm

be the set of execution traces
that include instructions in Γ−1(Cyn′) and hence include Γ−1(yn

′) and so
yn because yn

′ post-dominates Cyn′ in the input program. Similarly, S−xm

be the set of execution traces that do not include Γ−1(Cyn′) and hence do
not include Γ−1(yn

′) and yn. This is equivalent to the definition of semantic

control dependency and so we have xm
semantic−−−→yn.

So for both cases yn
interp−−→xm implies yn

semantic−−−→xm under the realizable paths
assumption.


