Deobfuscation of Virtualization-Obfuscated Software

A Semantics-Based Approach

Kevin Coogan Gen Lu Saumya Debray
Department of Computer Department of Computer Department of Computer
Science Science Science

University of Arizona
P.O. Box 210077
Tucson, AZ 85721-0077
kpcoogan@cs.arizona.edu

ABSTRACT

When new malware are discovered, it is important for re$esasc
to analyze and understand them as quickly as possible. asis t

has been made more difficult in recent years as researchess ha

seen an increasing use of virtualization-obfuscated malwade.
These programs are difficult to comprehend and reverse esigin
since they are resistant to both static and dynamic analgsis
nigues. Current approaches to dealing with such code firstse-
engineer the byte code interpreter, then use this to workaut
logic of the byte code program. This outside-in approachipces
good results when the structure of the interpreter is kndawhcan-
not be applied to all cases. This paper proposes a diffeppnbach
to the problem that focuses on identifying instructions tiifect
the observable behavior of the obfuscated code. This irmidlap-
proach requires fewer assumptions, and aims to complemisit e
ing techniques by broadening the domain of obfuscated progr
eligible for automated analysis. Results from a prototygus on
real-world malicious code are encouraging.

Categories and Subject Descriptors

D.4.6 [Operating System$: Security and Protectiontavasive Soft-
ware

General Terms
Security

Keywords

virtualization, deobfuscation, dynamic analysis

1. INTRODUCTION

Recent years have seen an increase in malware protectedtagai

analysis and reverse engineering using virtualizatiorusdztors
such as VMProtect [16] and Code Virtualizer [11]. Such obéis
tors embed the original program’s logic within the byte céalea

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

CCS’'11,0October 17-21, 2011, Chicago, lllinois, USA.

Copyright 2011 ACM 978-1-4503-0948-6/11/10 ...$10.00.

University of Arizona
P.O. Box 210077
Tucson, AZ 85721-0077
genlu@cs.arizona.edu

University of Arizona
P.O. Box 210077
Tucson, AZ 85721-0077
debray@cs.arizona.edu

(custom) virtual machine (VM) interpreter. It is difficutt tecover
the logic of the original program because an examinatioh@gtix-
ecuted code reveals only the structure and logic of the bytie- in-
terpreter. Additionally, there may be an element of randessrin-
troduced into the construction of the custom VM, so that easful
reverse engineering of one instance of a virtualizatiofustated
program does not help us deal with a different program olafiest
using the same obfuscator. This makes the task of reverageeng
ing virtualization-obfuscated malware code a challenging.

Existing techniques for reverse engineering of code ptettoy
virtualization-obfuscation [6, 12, 13] first reverse erggnthe VM
interpreter; use this information to work out individualtbycode
instructions; and finally, recover the logic embedded in lilyte
code program. This outside-in approach is very effectiverwtne
structure of the interpreter meets certain requirementwener,
when the interpreter uses techniques that do not fit thesengss
tions (e.g., direct-threading vs. byte-code interpretgtithe deob-
fuscator may not work well. This approach may also not gdnera
ize easily to code that uses multiple layers of interpretatsince it
may be difficult to distinguish between instruction fetcfasvari-
ous interpreters.

This paper presents a prototype tool that uses a different ap
proach to dealing with virtualization-obfuscated progsaive note
that for modern operating systems, programs interact \netsys-
tem through a predefined interface, typically implementedys-
tem calls. We also note that malicious code must use thigfaue
if its behavior is to be meaningful or impactful in any way. We
identify instructions that interact with the system, these warious
analyses to determine which instructions affect this axtdon, ei-
ther directly or indirectly. The resulting set of instruats is an ap-
proximation of the original code, while the remaining instions
approximate the set of instructions that are semanticailytarest-
ing and can be discarded.

The previous work mentioned above produces excellenttsesul
on those programs that match their assumptions. Becausapeur
proach does not attempt to recover the original instrustidmt
rather attempts to capture the relevant behavior of the,dbdl
not match those results for accuracy. However, our appraach
more general, and can be applied to a wider range of obfascati
techniques. Thus, it should be seen as complementing rexisgi-
proaches by providing information when others cannot.

The remainder of the paper is organized as follows: Section 2
describes the problem in detail and our approach to the sisaly
Section 3.1 describes our methodology for evaluation ofesults,
Section 3.2 presents the results of our analysis, Sectidschigbes
related works and Section 6 presents our conclusions.

2. DEOBFUSCATION

Static analysis of code that has been obfuscated usingakirtu
ization reveals only the structure of the virtual machirteripreter.
Similarly, the dynamic trace of a virtualization-obfussdtexecutable
is a mix of virtual machine interpreter instructions andiastions
performing the work of the original program. It is often diffit
to see the boundaries between these two sets of instructioas
looking at the trace. This task becomes even harder in tleetbas
multiple interpreters are used, or when the interpretgradi rou-
tine performs multiple operations (e.g., decrypting thdrads of
the next instruction).

Our approach is to try to identify instructions that are know
to be part of the original code, and eliminating those thatraot,
while not assuming any information about the specific stmecbf
the interpreter or its dispatch routines. In the remaindethis
section, we present an outline of our overall approach, digguss
the parts of this approach that are original work in furthetiad.

2.1 Overall Approach
The analysis of an executable consists of the followingsstep

1. Use atracing tool such as gemu [3], OllyDbg, Ether [5], etc
to obtain a low level execution trace that provides, at each e
ecution step, the address of the instruction executedilsleta
about this instruction (byte sequence, mnemonic, operands
etc.), and the values of the machine registers.

. ldentify system calls and their arguments in this tras@ai
a database that gives information about arguments anahretur
values of system calfsIn general, not all system calls may
be of interest (e.g., those occurring in program start up or
exit code may not be interesting), so we allow the user to
optionally indicate which system calls to consider.

. Use the available information to carry out analyses on the
instruction trace. These analyses flag instructions tliataf
the values of arguments, as well as conditional control flow
and the flow of control to system calls of interest. We refer
to these instructions aslevant instructions

. Build a subtrace from those instructions that have beakeda
as relevant. Thigelevant subtracepproximates a dynamic
trace of the original, unobfuscated code.

2.2 Value-based Dependence Analysis

To motivate our approach to deobfuscation, we begin by con-
sidering the semantic intuition behind any deobfuscati@tess.
Obviously, when we simplify an obfuscated program, we cénno
hope to recover the code for the original program for two seas
First, in the case of malware we usually do not have accesseto t
source code. Second, even where source code is availablerah
gram may change during compilation, e.g., via compilerdfan
mations such as in-lining or loop unrolling, so that the ctatehe
final executable may be different from (though equivaleptthat
of the original program. All we can require, then, is that tne-
cess of deobfuscation must be semantics-preservingthiat.the

1Our current implementation uses DLL calls as a proxy foresyst
calls, primarily because the Microsoft Windows API for DLIss
better documented and also more consistent across diffeeen
sions of the Windows operating system. This generally catise
analysis to be sound but possibly conservative since nddlall
calls lead to system calls. Itis straightforward to modifistto han-
dle code that traps directly into the kernel without goingtigh a
DLL: it simply requires examining the argument values otias-
tions that trap into the operating system kernel, esgsenter, to
determine the syscall number and hence the system call itsel

code resulting from deobfuscation be semantically egeitzb the
original program.

In the context of malware analysis, a reasonable notion -of se
mantic equivalence seems to be thabb$ervational equivalence
where two programs are considered equivalent if they behaee,
interact with their execution environment—in the same vi&ipce
a program’s runtime interactions with the external envinent are
carried out through system calls, this means that two prograre
observationally equivalent if they execute identical ssmes of
system calls (together with the argument vectors to thets).ca

This notion of program equivalence suggests a simple approa
to deobfuscation: identify all instructions that direatlyindirectly
affect the values of the arguments to system calls; thesmiat®ns
are “semantically relevant.” Any remaining instructiondich are
by definition semantically irrelevant, may be discardede Gtucial
question then becomes that of identifying instructiong #fect
the values of system call arguments: we discuss this issomia
detail in the remainder of this section.

The goal of dependence analysis is to work back from system
call arguments to identify all instructions that directlyindirectly
affect the values of those arguments. At first glance, théenseto
be a straightforward application of dynamic program sticih4],
but this turns out to not be the case. The problem is thanglici
algorithms follow all control and data dependencies in taec(an
instruction is control-dependendn an instruction/ if the execu-
tion of J can affect whether or not control goes & Since the
instructions that implement a byte-code operation areaitrol-
dependent on the dispatch code in the interpreter, it fallthat the
code that evaluates system call arguments and makes tlensyst
calls will also be control dependent on the interpreterspdich
code. The net result is that slicing algorithms end up indgd
most or all of the interpreter code in the computed slice amnd s
achieves little in the way of deobfuscation.

We use a different approach where we initially follow onlytala
dependencies, then consider control transfers separslfelyise a
variation on the notion ofise-definition(ud) chains [2]. Conven-
tional ud-chains link instructions that use a variable igt&g, mem-
ory location) to the instruction(s) that define it. While clains are
usually considered in the context of static analysis of @D, it
is straightforward to adapt them to dynamic execution sade
this case, we must match each use of a variable with the irestain
the instruction in the trace that defines it.

Because they do not follow control dependencies, ud-claioisi
the imprecision problem encountered with program slicaan(rol
flow has to be identified separately in the deobfuscated Ebtimy-
ever, conventional ud-chains have precision problemseif twn.
Consider the following instruction sequence:

[*I*I mov eax, [ecx+edx]
[*I>*/ push eax
[*Is* call print

The argument to thgrint call is loaded from memory by instruction
I, then pushed onto the stack by instructibn A conventional
ud-chain calculation would show that instructibnusesecx, edx,
and the memory address pointed to by adding these valuehérge
However, only the memory address is relevant tovhieie passed
to the system call. This results in a loss of precision. What w
should do, instead, is disregard the registers used fordteeas
computation and trace back to find the (most recent) instnuct
that wrote to the memory location being accessed.

To deal with this issue, we define a notiorvalue-based depen-
dence The essential intuition here is that we focus on the flow of
valuesrather than on details of the intermediate computations of

the addresses of these values. This is done by redefiningtloé s
locations used by an operand as follows:

use(op) =
if opis a register- then {r}
else ifop specifies a memory addresshen {a}
elsef;

We then identify the instructions that amdevantto the system
calls executed by the program as follows. For each systehincal
the execution trace, we use ABI information to identify thigua
ments that are being passed; we initialize a%ébv the locations
holding these arguments. We then scan back in the tracéngtar
at the the system call, and process each instrudtias follows: if
I defines a locatiod € S (which may be a register or a memory
location) thenl is marked aselevant ¢ is removed fron, and the
set of locations used by according to our notion of value-based
dependencies (sese() above) is added t6. This backward scan

continues untilS becomes empty or we reach the beginning of the

trace. The effect of the value-based dependence analysisitoled
above is that when an instructidraccesses a value from a memory

locationa, the dependence analysis works back to find the nearest

previous instruction that wrote to locatianbut ignores the details
of how the address was computed by.

Under certain conditions, the above algorithm may suffemfa
lack of precision. The problem arises when the parametenésq
tion is a pointer to a structure of some sort, and the functih
is using an element of that structure. The trace-back basebeo
pointer itself only reveals the initialization of the sttue. With-
out knowing the size of the structure, we will not recognizeew
elements of the structure are being set. To solve this prohpeior
to performing our analysis, we must analyze the trace of yse s
tem calls to identify what values are used, and if those whre
referenced using the pointer parameter.

For each system call, we create aBgtvhich holds all of the lo-
cations (register or memory locations) which might potahtibe
pointers, and a sél, which holds all of the memory locations that
have been accessed through a pointer. Initi&lyyolds the stack
locations of the parameters to the call, dfids empty since we

have not encountered any uses yet. We scan forward throegh th

trace of the system call and look at each instrucfioitypically, I
will uses some number of locations (i.e., register and mgrtwr
cations), which we will cal¥; , 45 , ..., to define some location,
which we will call ;. If T uses some locatiofy € P to define/g,
then/,; may potentially also be a pointer and is addedPtd-ur-
thermore, if¢; is known to access a memory location (eegx in
the instruction fove ebx, [eax]), then the values stored at/; is
also added to sé¥l, since we know that it is a memory location
accessed through a suspected pointer. Finally, if instnudt de-
fines a locatiort, € P, andl does not use any values frd then
we can assume thdtis redefiningl,; as something other than a
pointer that we are tracking, and we remdyefrom P. The algo-
rithm continues untiP is empty, or until the end of the system call
trace is reached. At this point, the $étcontains a set of memory
locations that we suspect are part of structures pointegl tmb of
the system call parameters. These locations are added setfe
above as part of the parameters passed to the call.

2.3 Relevant Conditional Control Flow

Value-based dependence analysis identifies the instnsctimat
compute the values of system call arguments, but not theciasso
ated control flow instructions. The problem with identifgirele-
vant control transfer instructions in virtualized codehattcontrol

other VM instructions. In the popular 1A-32 (x86) architex
(the target of our analysis tool), conditional statememés tgpi-
cally implemented by setting the appropriate conditionecibalys in
the designatedflags register, then executing a conditional branch
statement, e.gjnz that reads this register. The target of the branch
statement is either the address given in the instructiomeoaddress

of the next instruction in the code, depending on the valoresgtin
this eflags register. Hence, to recognize when conditional control
flow is occurring, we can examine all control flow statemeatg.(
jumps, conditional jumps, calls) to see how their targetrastskes
are calculated. Any control flow instruction whose targedrads
calculation is conditionally dependent on some previolise/is an
implementation of a conditional branch statement.

It is possible that conditional logic will not be implemedtex-
actly as described above in virtualization-obfuscatedecéwr ex-
ample, VMProtect eliminates the branch statements and srtbee
value of the flags register to other general purpose regigtema-
nipulation. However, while theoretically possible, we aot aware
of any obfuscation programs that implement conditionaidegth-
out the use of the value of theflags register at some point in the
code. Hence, we can examine target address calculatio@yjor
dependence on the value of thitags register as an indication of
conditional dependence. Even assuming that the flags eeggst
used, there are still multiple ways to use this value to immget
conditional logic. Thus, our approach must be general emdog
handle any such implementation. We handle this problenutiro
the use of an equational reasoning system that was deveinped
house to handle x86 assembly code [4].

Our equational reasoning system translates each instnuicti
the dynamic trace into an equivalent set of equations. We thatt
in the dynamic trace, there may be multiple equations thfihele
the same register or memory location. To maintain the oaigin
behavior of the trace, we number the variables as followsar v
able appearing on the left hand side of an equation (i.e.riable
that is being defined) is numbered according to the orderithat
instruction appears in the trace. A variable appearing erright
hand side of an equation (i.e., a variable that is being used)m-
bered according to the instruction that defined it. Thesenigfi
instructions are found by searching backwards throughrduetto
identify where the definition came from.

}’;ilo*/ mov ebx, 0x0

[*I11*/ pop eax

[*I12* add ebx, eax

[*I13* pop eax

[*I14*/ sub ebx, eax
(@)

.e'b.xlo = 0x0

eaxj; = ValueAt(M1000)
espi; =espg +4

ebxy2 = ebxyg + eaxii
eflagsi2 = Flag(ebxio + eaxi1)
eaxj3 = ValueAt(M1004)

espi3 =espy; +4

ebx14 = ebx12 - eaxis

eflagsi4 = Flag(ebx;z - eax;3)

(b)

Figure 1: Simple example of translating instructions into euiv-
alent equations.

Consider the example in Figure 1. Figure 1(a) gives a snippet
of x86 assembly code, and Figure 1(b) gives the equivalam-eq

transfers may be handled by the same dispatch code thatelsandl tions generated by our system. We are assuming that the oflue

the stack pointeesp before instruction/;o executes is 1000. We
use the notation “ValueAt(M1000)” to indicate the valuerstbat
memory location 1000. Notice that tleax used in the equations
for instructionI;5 is not the same as theax used in the equations
for instruction/14, as is indicated by our numbering scheme.

Also notice that we are explicitly handling the setting o€ th
eflags register by generating its own equation. We introduce the
“Flag” operation to indicate the calculation of the flag stgr value
based on the expression passed as a parameter. So, foctiostru
112, ebx gets the result of addingbx;o to eax;;, and theeflags
register gets changed according the result of that samatiqer

For our purposes here, we are primarily concerned with the ca
culation of the target addresses of control flow instrucid®pecif-
ically, as described, we need to determine if any componetfieo
calculation of such a target address is dependent on the wdlu
some flag calculation. With our equational reasoning systee
need to generate a simplified expression for the target aslére
the point it is used, then check that expression to see ifritains
any calls to the “Flag” operation.

We must also account for the possibility of additional oviti
conditional logic added for the purpose of obfuscation. @bfis-
cation routine cannot change the behavior of the originadjam,
but it can add branch statements that are always true or sffatse,
to try to confuse analysis. For this reason, we can elimiaate
conditional logic that reduces to a constant boolean value.

Next, we will examine several examples of increasing comiple
ity to show how our system correctly identifies these coodéi
dependencies. First, we look at the simple example in Fig(ag
where the normal branch instructions are used to implemerdie
tional control flow. We know that thggz instruction uses the value
of theeflags register to decide whether or not to branch, so we add
a new equation at the point of the instruction to represent the
value of theeflags register.

)*'1.10*/ cmp ebx, eax
I11 mov ebx, 0x0
[*I12*/ mov eax, 0x10
[*I13* jnz 10000

(@)

eflagsip = Flag(ebx7 cmp eaxg)
ebxy; = 0x0

eaxis = 0x10

eflagsis = eflagsio

(b)

Figure 2: ldentifying control dependencies with branch in-
structions.

As seen in Figure 2(b), when we trace back to find the definition
of the right hand side, we see that it is the valueefidgs from
instruction I, that is being used. By substituting the definition

effect is as follows. If the result of the comparison turnedtioe
“zero” flag, then the value of thebx register after instructio 4

is one, otherwise, it is zero. The valuedbx is then added to the
index value stored ieax such that the actual index value used in
the jump depends on the result of the comparison in instmdii, .

In the context of virtualization-obfuscated code, the indalue is
the byte code of the next instruction, and the table conthiasd-
dresses of virtual instruction implementations.

[*I10* mov eax, index

[*I11*/ cmp ebx, ecx

[*I12*/ pushf

[*I13*/ pop ebx

I14 and ebx, Ox1

I15 add eax, ebx

I*I16* jump [eax*4 + 0x10000]
(@)

eaxio = index

eflags;1 = Flag(ebx4 cmp ecxs)
espiz = espg - 4
ValueAt(M1000),2 = eflagsi1
ebxy3 = ValueAt(M1000)1 2
ebxy4 = ebx;3 & Ox1

eaxis = eaxyg + ebxiy

target; = eaxis * 4 + 0x10000

(b)

Figure 3: Identifying control dependencies with no branch n-
structions.

To handle this case, we recognize the control flow statensent i
an indirect jump and depends on the target address catoulatie
generate an equation for the target address calculatiopessis
Figure 3(b), and simplify it as described before. The resugiven
in Figure 4, and shows that the target address depends oe-the r
sult of the “Flag” operation. Thus, the indirect jump is agtias a
conditional control flow statement.

target;s = index + (Flag(ebx4 cmp ecxs) & Ox1)

Figure 4: Result of target address simplification from Figure 3.

Finally, we examine a case inspired by the conditional @bntr
flow implementation that is used in VMProtect. We begin with
the example in Figure 3, and add the use of indirection. In the
code snippet of Figure 5(a), two index values are storedjacadt
locations in memory. The same trick is then used to conditlgn
load either the address of the first index or the address aitend
index into theesi register. Finally, the value stored at the location in
esi is loaded into theax register, and the indirect jump calculates
the address in the table to use.

For this example, let's assume that it wadex1that was used
in the calculation of the target address, and that the valiedeo

of eflagsio, we see that the value of the flags register used by the dresswas 5000. When we simplify our equation for targetwe

conditional jump instrution is “Flag(elxmp eax).”

will substitute “ValueAtgsiis)” for “eaxig.” By our assumption,

Next, we consider a case where the standard branch instruc-we know thatsiis holds the value 5000, so we substitute the value

tions are not used. This case would be anticipated whenzngly
virtualization-obfuscated code, since the dispatch nautypically
handles all control flow. Consider the code snippet in Fid({es.
We see that the indirect jump of instructidps is indexing into a
table located at addresg10000. The value okax indexes into the
table some number of 4-byte values. Instructiosn setseax equal

to some index value to be used. Instructidins throughI;s per-
form some comparison that sets the value of the flags regilsesr
moves the flag value into thebx register, and masks the value. The

at memory location 5000 which isdex1from instruction/;o. Our
simplified expression for the target is then “target index1* 4

+ 0x10000.” From this result, it appears that this jump is inot
plementing conditional control flow. However, this is wrord/e
know from our analysis of the code that the result of the compa
instruction determines whethérdexlor index2is used to index
into the table. The problem is that the conditional elemastiieen
hidden by a layer of indirection. When we calculate an exgioes
for the target address, we are only using direct dependgncie

Figure 5: Example of code using indirection to hide control ak-

pendencies.

}’;ilo*/ mov [addres§ index1

[*I11*/ mov [address + 4, index2

[*I12*/ mov esi, address
[*I13* cmp ebx, ecx

[*I14*/ pushf

[*I15* pop ebx

I16 and ebx, Ox1

[*I17*/ mul ebx, 0x4

I1g add esi, ebx

[*I19*/ mov eax, [esi]

[*I20*/ jump [eax*4 + 0x10000]

@)

ValueAt(addres$; o = index1
ValueAt(address + 411 = index2
esiio = address

eflags;s = Flag(ebx4 cmp ecxs)
espi4 = €espg -4
ValueAt(M1000)4 = eflagsis
ebxy5 = ValueAt(M1000)14
espis = espis +4

ebx,16 = ebx;5 & Ox1

ebxi7 = ebxig * 0x4

esiig = esij2 + ebxy7

eaxjg = ValueAt(esiig)

targetyp = eaxjg * 4 + 0x10000

(b)

the “Flag” operation, then we know that the target addrese-is
directly conditionally dependent. Any memory access sifiepl
expression that does not show any conditional dependemcbeca
discarded because it is irrelevant. Returning to our exarnmgFig-
ure 5, we calculate all simplified expressions for memoryeasc
and get the results shown in Figure 7. Here we see the condlitio
dependence that we expect, and can mark the indirect jump of i
structionlzo as implementing conditional control flow.

LOC_500019 = address +((Flag(ebx4 cmp ecxs) & 0x1) *4)
targetyp = index1* 4 + 0x10000

Figure 7: Result of target address simplification from Figure 5.

To handle multiple layers of indirection, we must account fo
all dependencies. We use an algorithm that propagatesnatan
forward as it scans over the equations in the trace. At eagh st
all control flow dependencies, direct and indirect, areemtéd as
described above and associated with that equation. Létdrati
equation is used in a target address calculation, the coenpdeof
dependencies is known and can be scanned for conditionaheep
dencies. The algorithm is presented in Figure 8.

Input: List of Equations EqnList
Output: List of simplified expressionsSimpEqgnList

Deps= 0

SimpEqgnList ()

for eachequationin EqnList
if IsConditionaléquatior)
then

To resolve this issue, we must account for any humber of lay- Deps= DepsU equation

ers of indirection. We could analyze the code, as we did tzre, endif ,

recognizing that it was address 5000 that was used, and 64t 50 ?AemAccesses GetMemoryAccessesForEqmuatior)
. . . or eachmemAcdn MemAccesses

However, th!s requires understanding hqw the code worksa@tt e Deps= DepsU memAce>deps

step, and will quickly become more difficult as code compiexi endfor

increases. Instead, we add new equations to our set thaedefin ExprList= SimpEqgnListJ equation

where the calculation of memory addresses come from. We in- for eachtermin equation

troduce a new variable for each memory access, named with the replacement FindReplacement(EqnList, term)

prefix “LOC” followed by the actual address that was accessed 'tfh;enplacemem‘ 0

Then a new equation is added that sets the value of that new var

able according to how the calculation was done. Each variabl

ReplaceTerntérm replacement
Deps= DepsU replacement>deps

labeled with the order number as before to guarantee thptttee endif

unique. Figure 6 shows the addition of the memory locatiareeq

equation—»deps= Deps

tion (marked *) for the memory access of instructifig in Figure endfor

5. In practice, we would add similar equations for all memacy
cesses. These are omitted here for the sake of clarity.

Figure 6: Equations augmented to handle indirection.

endfor
return SimpEqgnList

Figure 8: Pseudocode of simplified expression and conditi@h

ValueAt(5000)1 o = indexl dependency identification

ValueAt(5004)1; = index2
esi12 = 5000
eflags;s = Flag(ebx4 cmp ecxs)
espiq = espy - 4
ValueAt(M1000)4 = eflagsis
ebx;5 = ValueAt(M1000)14
espis = espis +4
ebxi16 = ebx;5 & Ox1
ebxi7 = ebxig * 0x4
esi1g = esiio + ebxyy

(*) LOC_500019 = esilg
eaxjg = ValueAt(LOC_500019)
targetyp = eaxjg * 4 + 0x10000

2.4 Relevant Call-Return Control Flow

Functions are important mechanisms for code structuring, a
are often the basic building blocks of a program during theigfe
phase. Identifying functions during reverse-engineeand deob-
fuscation, then, would be a useful step towards program cemp
hension. In the case of unobfuscated, compiler generatig] thus
can often be a very straightforward task. For example, x86pad-
ible compilers such agcc will typically use a standard preamble
for functions that saves the base pointer, then points the jpainter
to the top of the stack. Knowing this information, one carrclea
through the code for these instructions and subsequerhtifg
the beginning of many functions in the code. However, thitite

Now, for each memory access that is used to calculate the tar-nique is only a convention, and in the case where the codehis to
get address, we can start a new simplified expression fordhe a purposefully obfuscated, it need not be followed. Thisiseatlis-

dress calculation. If this calculation shows some deperyden

cusses the behavior of function calls and returns in vafiounss of

obfuscation, their essential properties, and explaingeblenique
we propose for identifying them.

1000 call 5000 1000 push 5000

e 1004 ret

5000 pop eax ce

5004 mov eax, [abcO] 5000 mov eax, [abcO]

(a) (b)

Figure 9: examples of indirect jump

2.4.1 Behavior of Function Calls and Returns

In general, compiler generated, unobfuscated code usessthe
sembly instructiongall andret for function calls and returns, re-
spectively. However, knowing how these instructions wdhbves
one to use them for other purposes. For examplecdhénstruc-
tion pushes the address of the next instruction onto théstlaen
jumps to its target address. The code in Figure 9(a) usesatite
jump to code at another location, then discards the retudnead,
effectively implementing an indirect jump. A similar tedbuoe is
often used irposition independent cod®1C-code) by using aall
instruction with a target address offset of 0. The effechi the
address of the next instruction is pushed onto the stacknéthar
example, theet statement pops an address off the stack, then jumps
to it. The code in Figure 9(b) pushes a hard-coded value dwto t
stack then executesret. The effect, as before, is equivalent to that
of an indirect jump.

1000 call 5000 /* — f*/ 1000 push 1008
1004 /*L* mov ebx, [eax] 1004 jmp 5000 /*—f¥
1008 inc ebx 1008 /*L*/mov ebx, [eax]
A 100C inc ebx
5000 /#*f*/ mov eax, [abcO]
5004 ret /¥ L% 5000 /#%*/ mov eax, [abcO]
5004 ret /*— L%

(a) no obfuscation (b) simple obfuscation
1000 push 1008 1000 push 6000
1004 mov eax, 5000 1004 /¥f*/ mov esx, [abcO]
1008 jmp [eax] /*— f¥/ 1008 ret /¥ L%
100c /*L*/mov ebx, [eax]
1010 inc ebx 6000 /*L*/mov ebx, [eax]
6004 inc ebx
5000 /#f* mov eax, [abcO]

5004
5008

ebx
[ebx]

pop

jmp /¥ —> L*¥

(c) another simple obfuscation (d) extensive obfuscation

Figure 10: Examples of function call/return obfuscation

Similarly, we can use other instructions to simulate theaar
of a function call and return. Figure 10(a) presents an wsitafted
function call/return pair, as might typically be seen in qiler
generated code. During execution, &l instruction at address
0x1000 pushes the address of the next instructigho04 onto the
runtime stack, then branches to the callee by copying thetitum
address0x5000 to the instruction pointer. The callee, when fin-
ished, pops the return address from the stack into the si&iru
pointer, resuming execution at the instruction immedyafellow-
ing the initial call. Figure 10(b) shows a semantically eglent
code snippet that uses simple obfuscation. ddikinstruction has
been replaced by @ush instruction that saves the return address to
the stack, and pnp instruction that copies the call target to the in-
struction pointer. Figure 10(c) gives a slightly more olshited ver-
sion of the same code. Here, the target of the call and thenrate

both saved to a register first, thefma instruction moves the value
in the machine register to the instruction pointer. Theseetlex-
amples suggest a possible necessary condition for cadhgéaitts —
that is, that they push the address of the textually follgwirstruc-
tion onto the runtime stack, then copy the target of the cathe
instruction pointer. Existing work [8] uses this assumptio iden-
tify function boundaries, and is capable of detecting tHEreturn
pairs in Figures 10(a) - (c).

However, Figure 10(d) gives an example of a call/return {heit
does not follow the above assumption. Here, the memory tayou
has been changed such that the call is executed by conthahgfa
through” to the callee without explicit branching. The metad-
dress, which is initially pushed onto the stack, points tinatruc-
tion that is no longer adjacent in memory to the call insinrct
This code would not be recognized as a call/return pair bstiexj
techniques; however, from a dynamic point of view, it argydias
the identical behavior of the code in Figure 10(b). Furtremen
there is no technical reason that the return address hasstoteel
on the runtime stack. A program could easily maintain its own
stack-like data structure apart from the system stack. itndise,
read and write operations on the memory of this separatetsteu
would substitute fopush andpop operations in the traditional im-
plementation. Finally, the value saved to memory does neh ev
need to be the actual return address. Rather, it could beederi
from the return address by some invertible transformatmal, re-
stored to original form at the last minute before the retuwie
have witnessed exactly these obfuscations in our work amay
programs obfuscated by VMProtect and CodeVirtualizer.

2.4.2 Identification Approach

In order to correctly identify function call/return pains obfus-
cated code, we must first identify the essential propertiesioh
pairs that do not rely on unnecessary conditions. Traditlpna
call is indicated by pushing the return address onto theimant
stack, and branching to the callee. The return is effectedeby
trieving this saved address and copying it to the instragtiointer.

Our examples in Figure 10 demonstrate that many of theseaoper
tions, such as saving the return address to the runtime, stechot
necessary but rather convenient conventions used by cerstfilat

do not try to hide the functionality of code. When we try toritiéy

what is common to all cases, it is much more general. We observ
that a return address, in some form, must be saved by the calle
before execution hits the target function. Furthermore,réturn
address must be retrieved by the callee, and used so that flow o
control begins at this address after execution of the fonctirhis
suggests the following semantics:

Call: a code address is saved at the call site.
Return: the saved address is used for a control transfer at the re-
turn point.

Notice that calls and returns are defined as a pair of insbnst
such that they cannot be identified individually. Based s dief-
inition, the only tie between the call and return is the fimts
return address. We use this as a necessary condition fatidanc
call/return pairs. This approach handles all of the casesgmted
in Figure 10. However, we point out that our definition doegeha
one, known shortcoming. In the case where a function po{nter
address) is stored in memory, then used later to jump to timatf
tion, these instructions will be identified as a call/retpair. Our
current results are virtually unaffected by this case,esthe origi-
nal source makes little or no use of function pointers, aedctide
is compiled on a commercial compiler. However, we are ctlyen
working to find a acceptable solution to the problem.

Next, we show why the above condition, while necessary, tis no
sufficient. Virtualized code presents an additional andificant
challenge. First, because the interpreter makes use offdhe-a
mentioned techniques such as a simulated stack in place afitih
time stack. More importantly, because the same instruciged
by the interpreter to implement byte-code dispatching aanded
to implement function calls and returns. Figure 11 presaritag-
ment of a byte-code dispatching routine generated by VMietot
(instructions unrelated to dispatching logic are ignoréul}his ex-
ample esiis used as the VM'’s instruction pointer by the interpreter.
Instructions/; throughl, load the encrypted byte-code frosi,
decrypt it, therls uses it as an index to locate the encrypted address
of a byte-code handling subroutine in a dispatching tahbistrlic-
tion Is decrypts the address, and eventually saves it at the top of th
runtime stack. Finally, et instruction is used—similar to the exam-
ple in Figure 10(b)-to jump to the byte-code handling subneu

[*I1*/ mov al, [esi]

[*I3* ror al, 0x4

[*I3*/ add al, Ox3e

I*I4* negal

[*Is* mov edx, [eax*4+0x401e34]
[*Ig* add edx, 0x5216a67c

[*I7*/ mov [esp+0x28], edx

[*Ig*/ pushfd

[*Io*/ push dword [esp+0x30]
[*I10* ret 0x34

Figure 11: Examples of byte-code dispatching in code obfus-
cated using VMProtect

Typically, a similar set of dispatch instructions is useddach
virtual instruction encountered by the interpreter. Tlude clearly

Input: T: Trace
Output: P : List of identified call/return pairs
for u=sizeof(T) to 1do:
if instructionT[u] is indirect jump to address
AND T[u] is not marked aSAVE
AND T[u] is not used as a DLL call

then
s=uy;
relevant_count 0
while s> 1 do:
if T[s] is relevant
then
relevant_count+;
if T[s] initially savesd
then
markT[s] asSAVE
markT[u] asUSE
if relevant_count> 0
then
[* call/return found */
save(s, u)in P;
break;
else
S-5
else
continue;
return P,

Figure 12: Pseudocode of function call/return identificaton al-
gorithm

ful way. The order number is a unique number for each instahce
an instruction in the original dynamic trace that represéms order
that instruction appears. Instructions labeled relevantbse they
contributed to the value of the system call parameters atecatb

meets the “save and use” of a target address definition that wethe relevant subtrace in order. For call/return pairs, we stdn-

present above. In this case, each iteration of the interpreduld
be identified as a call/return pair, which is clearly not wivatwant.
To eliminate these false positives, we add one additioeallsased
on the concept of relevant instructions introduced earlibe idea
behind identifying instructions that contribute to theuglof sys-
tem calls is to separate the instructions of the virtual nrecfrom
the those of the original code. Thus, any call/return paimfbich
there are no relevant instructions in the call are semditiiceel-
evant, and can be ignored. We present the previous defirdfion
calls and returns, along with the condition that there beastlone
relevant instruction in the function call, as necessarysufticient
conditions for identifying call/return pairs.

While these conditions may be debatable, we argue that func-
tions are not strictly necessary for the implementatiorigdd@thms
as computer code. Rather, they are abstractions that aliovah
programmers to more easily design and implement solutiéss.
such, it may be possible to generate assembly level codentets
our definition of a call/return pair, that was not intendedHtoy pro-
grammer as an actual call to a function. Such cases areabéwit
when analyzing the implementation of something that is, dfyni
tion, an abstraction. In these cases, we believe that amy theit
meet our definition are as good as intended call/return.pairs

With these conditions, identifying function call/returais be-
comes straightforward: identify all the address save/wses @as
candidates of function call/return pairs, then remove whatds that
enclose no relevant instructions (as previously identifigdalue-
based dependence analysis). The algorithm is shown ind-fur

2.5 Relevant Dynamic Trace

The final step is building the relevant subtrace. We use order
numbers to combine the results of the previous steps in aimgan

dardcall andret instructions at the appropriate locations, regardless
of the obfuscated implementation. This works well becabse t
original program is typically generated by a compiler usatan-
dard conventions. Similarly, for conditional control flowe add a
generic branch statement that will match with any standeaddh
statements.

3. EXPERIMENTAL EVALUATION
3.1 Experimental Methodology

The evaluation of our approach to deobfuscation presemésale
significant problems that must be addressed. In essense, thab-
lems point back to our previous discussion of program edgrivze
(see Section 2.2). We have argued thtagervational equivalende
a reasonable goal, but testing for such an equivalence cdiifbe
cult. Itis necessary to identify the system cadisdthe instructions
that affect their parameters. To see why the system caliealar
the calls and the values of their parameters are not enoaghider
the following example. A program that takes 2 integers artguts
their sum will produce the same output as a program that takes
integers and outputs their product, if the inputs to bothgpms
are 2 and 2. In its simplest form, the only system call reqlige
theprint statement.

Even if we take into account the relevant instructions, wedne
to account for them properly. Previous work by Shaeifal [13]
has built control flow graphs for the original program anddbeb-
fuscated program to demonstrate similarity between the Wiis
approach becomes more difficult as the programs get larger an
more complex. Furthermore, the idea is less applicabletavork
than theirs. They use knowledge of the interpreter to ifenthere

original instructions are stored in memory. In those caskere
their code is applicable, they are able to recover most afahie

original instructions. Since we identify relevant instioos, con-
trol flow graphs of our results will not show the structureuléag

from things like dead code, or branches not taken.

To further complicate this idea, there is no guarantee tteabb-
fuscator will use the same instructions from the originaigsam.
We have seen how VMProtect and CodeVirtualizer rewrites as
other semantically equivalent instructions. It is posstbiat obfus-
cators may rewrite other instructions. For example, theistdtor
may unroll some loops to hide part of the control flow graph, or
it may rewrite a multiply operation as a loop of adds so that ne
control flow structure is found in the obfuscated code. Qfang
these differences likely will be impractical.

Unfortunately, we do not have a perfect solution to the probl
so we present an imperfect solution that we try to tune to wieat
know about the current state of virtualization-obfuscatede. Our
approach is to treat the traces and relevant subtraces asnees.
We can then use known sequence matching algorithms to cempar
one trace to another. This approach is robust to the ideantbat
cannot recover the original code precisely. Matching wiilegus
a score for our deobfuscation, regardless of how good oultses
are. These scores can be compared on a relative basis. Wihile s
imprecise, a score that is significantly higher than anosheuld
correspond to better matching.

This approach is also fairly flexible, and allows us to harsaie-
eral of the issues presented by program equivalence. Fiedt,0
we know that the current virtualization programs that weneixed
rewrite library calls and some conditional branches usamganti-
cally equivalent instructions. Itis a simple matter to esd library
call implementations with aall statement at the appropriate place
in the trace. Similarly, conditional branch implementat@an be
replaced with a generigec instruction that will match any condi-
tional branch from the original code. Since the original e&asl
compiled by a commercial compiler and will typically use agh
standard instructions, this is a reasonable step, anddae\good
results. This approach also allows us to handle other instaof
semantically equivalent instructions. For example, it asgble
that an increment instruction could be rewritten as an adttn-
tion. We can build equivalency classes into our matching-alg
rithm as appropriate, so that an increment matches an atistnu
that adds one. In doing so, we are moving closer to the idea of
comparing the behavior of two traces, and not their actualem
mentation. This idea is more robust and matches the intéribtbe
program equivalence, since these cases truly are equivalen

In addition to considering instruction operation equivales, we
must also consider how instruction operands are handleis. i§h
sue is especially relevant in the context of virtualizatadfuscated

code. Due to the nature of the stack based approach used in the 7.

obfuscation programs we examined, it is possible, evety|ikeat
the operands of the instructions will be different than ia ¢higinal
program. For example, in the sample files that we tested, \éMPr
tect uses thesi register as the virtual machine instruction pointer.
In CodeVirtualizer, the addresses of virtual instructians always
loaded into theal register. In both cases, the values to be operated
on are stored on the virtual stack, and popped into machige re
isters when needed. There is no technical reason why thealirt
machine would try to move these operands into the same eegjist
that were used in the original code. To handle this, we caimot
clude the operands in the matching algorithm. Instead, weuok/
the opcodeddd, call, etc.) to represent the instruction.

Next, we must consider to what we will match our results. We
need to generate a trace of the original program on the same in

puts. In order to present an unbiased representation ofrifieal
program, we must limit the amount of processing and anatisis

is done to this trace. At the same time, we do not want to ireclud
instructions that may taint our results. As a result, we elate

all instructions that result from library calls from bottetbriginal
trace and the obfuscated trace. There are also a numbetmfcins
tions that are part of the operating system initializatiangd are
included in every execution trace. We eliminate these tiesitins
from both the original and obfuscated traces.

The matching algorithm itself is straightforward. Like @umraly-
sis, we use the knowledge of system calls as a guide. Thestaaee
broken into segments, where a segment includes all inginsctp
to and including the next system call, or the end of the tractthe
case where the system calls between traces do not matchyexact
we use the subset of calls that form a one-to-one corresporde
between the two traces. Segments are then matched, andg-all se
ments are aggregated. A matching provides a score repirggent
how many instructions from the original trace appear inagithe
obfuscated subtrace or our relevant subtrace.

As a final step, we wish to calculate how effective our analysi
has been. To do this, we must take into account two competing
factors. First, our analysis is trying to identify as manstinctions
from the original trace as possible. At the same time, wergieg
to eliminate as many virtual machine instructions as we CEm.
this end, we present two numbers for each test. The first,twhic
we call therelevance scoreis the percentage of the instructions
from the original trace that are included in the relevanttsade.
The second, which we call thabfuscation scorgs the percentage
of instructions added by the obfuscator that are correcityueled
from the relevant subtrace. It is easy to optimize eitherhekée
values individually, but achieving good (i.e., close to #)Gcores
for both is difficult, and will provide a fair evaluation of owork.

Taking into account the above discussion and concerns, esept
the following methodology for evaluating our analysis:

1. Original source code of a test program is compiled into an

executable.

. A dynamic trace is generated for the original executahle o
some input set.

. An original subtrace is generated by including only instr
tions from the executable module.

. The executable file is protected using an available \iga@on-
obfuscation technique.

. A dynamic trace is generated for the obfuscated version of
the executable.

. We perform our analysis per Section 2 on the obfuscated sub

trace, and generate a relevant subtrace.

The obfuscated subtrace is matched to the original stéhtra

and scores are produced.

The relevant subtrace is matched to the original subteame

scores are produced.
9. The relevance score and obfuscation score are calculated

10. The process is repeated for all combinations of virzadilon-

obfuscation techniques and input test files.

(2]

8.

3.2 Experimental Results

To evaluate our analysis, we tested three toy programs simpl
enough that results could be checked by hand-an iteratote-fa
rial implementation, a matrix multiplaction program witbuble
nested loops, and a recursive fibonacci implementation. éée a
tested two samples of malicious co@e#Moose and hunatcha—
whose C source code was available from the VX Heavens web

Table 1: Results for programs obfuscated with VMProtect

Name Original trace size| Obfuscated trace sizp Relevant trace size relevant matching| Rel. Score| Obf. Score
factorial 92 15365 222 54 58.7% 99.0%
matrx_mult 651 138798 597 345 53.0% 99.8%
fibonacci 151 16438 167 63 41.7% 99.4%
BullMoose 94 6900 376 36 38.3% 95.0%
hunatcha 2226 3327 1347 1347 60.5% 100.0%
md5 2257 77219 5347 1700 75.3% 95.1%
Table 2: Results for programs obfuscated with CodeVirtualzer
Name Original trace sizel Obfuscated trace sizg Relevant trace siz¢ relevant matching| Rel Score| Obf Score
factorial 92 172249 48720 56 60.9% 71.7%
matrx_mult 651 1571686 270143 454 69.7% 82.8%
fibonacci 151 223053 18560 102 67.5% 91.7%
BullMoose 94 120982 32817 67 71.3% 72.9%
hunatcha 2226 3881611 1066993 1524 68.5% 72.5%
md5 2257 5732714 2613431 2099 93.0% 54.4%

site [1]. Finally, we tested a simple benchmark utility thatforms
the md5 checksum. The results of our analysis on VMProtect ob
fuscated code are shown in Table 1 and the results of oursisaly
on CodeVirtualizer obfuscated code are shown in Table 2.

Table 1 shows that for most of our test programs, our analysis
is able to identify better than half of the original programstruc-
tions, while in all cases eliminating over 90% of the obfusra
introduced by VMProtect. Similarly, Table 2 shows even drett
results, identifying on average about 70% of original pangrin-
structions from CodeVirtualizer obfuscated code. Howgewer
analysis fairs worse, eliminating about 75% of obfuscatistruc-
tions on average. Overall, these results are encouragimgg sur
approach only identifies those instructions that affectbeavior
of the program. We anticipate that many of the “missed” instr
tions are performing functions like allocating memory datiatiz-
ing data structures, and will not be caught by our analysieuany
conditions. Hand analysis reveals that some of the missdrlir:
tions result from instruction implementations whose eaglginces
(see Section 3.1) were not anticipated. For example, sorsie
andpop instructions were replaced withov.

We note that, unlike the rest of our test programs, we were not
able to achieve our results for the md5 benchmark prograougfr
totally automated means. The analysis of this program, even
the unprotected version, used excessive amounts of memary a
crashed. The problem resulted from some of the return vaifies
early calls tofopen andfread functions being used in later calcu-
lations. The resulting expressions were not able to be #ietbl
easily by our equational reasoning system, which resuitéarger
and larger expressions being generated late in the dynaage.t
We would also like to note, however, that our equational saiey
system allowed us to identify this problem easily, and atsed-
lect these function call return values for manual simplifma We
were able to make these simplifications in about an hour, eed f
that the results were still worth reporting.

believe that this may result from the use of constant valbatsare
stored in memory, and manipulated to add obfuscation. Fer ex
ample, instructions that require the constant 1, may idstse a
reference to a variable that holds the value 1. Furthernibtieis
variable is modified every time it is used (e.g., it is increneel
then decremented just before use), this will create an@atifie-
pendency between the use of the value, and all previouscesa
of manipulation. Of course, the obfuscator cannot changéutinc-
tion of the original program, so we believe these depenésnzin
be identified. We have had some success using code simdificat
techniques such as constant propagation and arithmetdioa-
tion, but work on this issue continues.

The results in both tables also show the extraordinary asae
in the number of executed instructions for both obfuscat@ar
toy fibonacci program, for example, executes 151 instrostio
the original trace. However, the VMProtect obfuscated ivarex-
ecutes 16,438 instructions, and the CodeVirtualizer afzfies] ver-
sion executes 223,053.

4. DEFEATING OUR ANALYSIS

The previous discussion begins to answer an obvious guestio
how would an attacker defeat our analysis? We must assurhe tha
once our analysis is known, malware authors will attempkiast
its vulnerabilities. Our analysis is highly dependent andhtput of
our equational reasoning system, which attempts to buiglsied
equations for each instruction in the dynamic trace. In teeof
the md5 analysis, we have seen how callpen andfread could
not be simplified away, leading to longer and longer expoessi
later in the trace of both the unprotected and protectedores ©f
the test file. We have similar results when analyzing the @otie
alizer protected versions of code, which stores importahtas in
encrypted form in memory, then decrypts these values befege
The decryption routine is difficult to simplify, and if progg cho-

We examined the results by hand, and found the reason for thesen, could similarly cause runtime and memory usage issuei

lower obfuscation scores on CodeVirtualizer files as coegbdo
VMProtect files. CodeVirtualizer uses an interesting téghe that
artificially creates a dependency between some originajrpro
instructions and the virtual machine interpreter insinrd. We

equational reasoning system. Hence, any such algorithrbeém
ded in the code, that cannot be simplified away has the pateati
cripple our analysis by making the problem impractical.

We have also seen how CodeVirtualizer builds artificial depe
dencies between the virtual machine code and the origiogrpm

code. Since our analysis is based on the idea of separatisg th
two sets of instructions, successfully building such depecies
has the effect of thwarting the analysis. If done propetlymay be
possible to build such dependencies between most, or sttuirt
tions in the trace, thus driving our obfuscation scores tdvaés.
Because the obfuscation cannot change the function of thmalr
program, we speculate that such dependencies can, in tHeory
identified and handled. However, to date, we have not exgliis
idea in depth, and leave such analysis for future work.

5. RELATED WORK

The deobfuscation of code obfuscated using virtualizatibn
fuscators has been discussed by Rolles [12], Skaaf. [13], and
Falliere [6]. These works follow the outside-in approactlioad
in Section 1. Lau discusses the use of dynamic binary traosla
to deal with virtualization obfuscators [9].

There has been some work, in the programming language com-
munity, on using a technique call@drtial evaluation[7] for code
specialization, in particular for specializing away ipetive code.
However, the literature assumes that the program analydisans-
formation are static, which suggests that its applicatmhighly
obfuscated malware binaries may not be straightforward.

The notion of obfuscation through virtualization has soine-s
ilarities with the idea otontrol flow flatteningd17]. Udupaet al.
discuss techniques for deobfuscating code that has begttb
to this transformation [15]. These techniques are statid,there-
fore very different from the ideas presented here.

There is arich body of work on various sorts of dependenck ana
ysis in the program analysis literature. The notion of udich
for relating uses and definitions of variables during stptmgram
analysis is well-established [2]. There is an extensiveyhafdit-
erature on program slicing [14], but as discussed earliertéth-
nigue seems too imprecise for our needs.

6. CONCLUSIONS

Virtualization-obfuscated programs are difficult to resgeengi-
neer because examining the machine instructions of thegmg
either statically or dynamically, does little to shed ligini the pro-
gram'’s logic, which is hidden in the interpreted byte-coégor ap-
proaches to reverse-engineering virtualization-obfigstprograms
typically work by first reverse engineering the byte-coderipreter,
and then working back from this to work out the logic embedded
in the byte code. This paper describes a different apprdeattfa-
cuses on identifying the flow of values to system call ingtours.
This new approach can be applied to a larger number of obtesca
binaries because it makes fewer assumptions about therudtilre
virtual machine interpreter, and still produces good tssoih test
files including two malware executables and one benchmalk ut
ity. On average, we identify 50% to 75% of instructions frdma t
original program, while eliminating approximately 75% @%@ of
instructions added by the obfuscator.

The system works by gradually adding instructions that afe ¢
culated to be of importance, and adding these to a relevdmt su
trace that represents the behavior of the original, unalatesl pro-
gram. Instructions that contribute to the values of systalinacgu-
ments are included, as are call/return pairs, and conditicontrol
flow statements. We note that our analysis only identifieslicon
tional control flow statements of the original program thapear
in the dynamic trace, and, thus, misses code paths that tex&o
cuted. In principle, it should be possible to extend muitifpanal-
ysis techniques (see, e.g., [10]) to the conditionals satified.

In practice, our intuition is that this will likely be chaliging be-

cause virtualization-based obfuscation will mean thanhtifigng
path constraints (as in Moser et al’'s work) will not be sthdfigr-
ward. The issue is beyond the scope of this work, but would be
interesting and relevant for future work.

Acknowledgements

This work was supported in part by the National Science Faund
tion via grant no. CNS-1016058, as well as by a GAANN fellow-
ship from the Department of Education award no. P200A070545

7. REFERENCES

[1] VX Heavens, 2011htt p://vXx. netl ux. org/.

[2] A. V. Aho, R. Sethi, and J. D. UllmarCompilers — Principles,
Techniques, and Tooléddison-Wesley, Reading, Mass., 1985.

[3] F. Bellard. QEMU, a fast and portable dynamic transldior
USENIX Annual Technical Conference, FREENIX Trapages
41-46. USENIX, 2005.

[4] K. Coogan and S. Debray. Equational reasoning on x86
assembly codeSource Code Analysis and Manipulation, IEEE
International Workshop qr2011.

[5] A. Dinaburg, P. Royal, M. |. Sharif, and W. Lee. Ether:
malware analysis via hardware virtualization extensitms.
Proceedings of the 2008 ACM Conference on Computer and
Communications Security, CCS 2008, Alexandria, Virginia,
USA, October 27-31, 200@ages 51-62, 2008.

[6] N. Falliere. Inside the jaws of Trojan.Clampi. Techrdica
report, Symantec Corp., Nov. 2009.

[7] N. D. Jones, C. K. Gomard, and P. SestB#firtial Evaluation
and Automatic Program GeneratioRrentice Hall, 1993.

[8] A. Lakhotia, E. U. Kumar, and M. Venable. A method for
detecting obfuscated calls in malicious binari€&EE
Transactions on Software Engineerjrgf(11):955-968, 2005.

[9] B. Lau. Dealing with virtualization packer. I8econd CARO
Workshop on Packers, Decryptors, and Obfuscatilay 2008.

[10] A. Moser, C. Kruegel, and E. Kirda. Exploring multiple
execution paths for malware analysis SR '07: Proceedings
of the 2007 IEEE Symposium on Security and Privaages
231-245, 2007.

[11] Oreans Technologies. Code virtualizer: Total obftisca
against reverse engineering, Dec. 2008.
http://ww. or eans. conl
codevirtualizer. php.

[12] R. Rolles. Unpacking virtualization obfuscators.Rroc. 3rd
USENIX Workshop on Offensive Technologies (WOOT, '09)
Aug. 2009.

[13] M. Sharif, A. Lanzi, J. Giffin, and W. Lee. Automatic rege
engineering of malware emulators.Pnoc. 2009 IEEE
Symposium on Security and Privatjay 2009.

[14] F. Tip. A survey of program slicing techniquelaurnal of
Programming Language$:121-189, 1995.

[15] S. K. Udupa, S. K. Debray, and M. Madou. Deobfuscation:
Reverse engineering obfuscated codeRPioc. 12th IEEE
Working Conference on Reverse Engineerpages 45-54,
Nov. 2005.

[16] VMProtect Software. Vmprotect software protectiof08.
http://vnmpsoft.com.

[17] C. Wang, J. Davidson, J. Hill, and J. Knight. Protectin
software-based survivability mechanismsPlroc.

International Conference of Dependable Systems and
Networks July 2001.

