
Efficient Algorithms for Pursuing Moving Evaders in
Terrains

Alon Efrat
Department of Computer

Science
The University of Arizona
alon@cs.arizona.edu

Joseph S. B. Mitchell
Department of Applied

Mathematics and Statistics
Stony Brook University

jsbm@ams.stonysb.edu

Parrish Myers
Department of Computer

Science
The University of Arizona

pmyers@email.arizona.edu
Swaminathan Sankararaman

Department of Computer
Science

Duke University
swami@cs.duke.edu

ABSTRACT
In this paper, we propose algorithms for computing optimal
trajectories of a group of flying observers (such as helicopters
or UAVs) searching for a lost child in a hilly terrain. Very
few assumptions are made about the speed or direction of
the child’s motion and whether it might (either deliberately
or accidentally) try to avoid being found. This framework
can also be applied to a set of seekers searching for hostile
evaders such as smugglers/criminals, or friendly evaders such
as lost hikers.

Based on the features of the area of the terrain where the
pursuit takes place, and the visibility and motion charac-
teristics of the UAVs, we show how to plan their synchro-
nized trajectories in a way that maximizes the likelihood of
a successful pursuit, while minimizing their battery or fuel
usage, which may, in turn, enable a longer pursuit. Our
algorithm explores useful I/O-efficient data structures and
branch-cutting (search pruning) techniques to achieve fur-
ther speedup by limiting the storage requirements and total
number of graph nodes searched, respectively.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics—Autonomous ve-
hicles, sensors, workcell organization, planning

General Terms
Algorithms, Performance, Experimentation

Keywords
Algorithms, UAV, coordinated route planning, branch-cutting,
sensors, I/O-Efficient data structures

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

1. INTRODUCTION
In this paper, we propose solutions for a set of optimiza-

tion problems related to searching in terrains demonstrated
by the following scenario. A young child is lost in hilly
terrain. His/her actions are unpredictable and location un-
known, but constrained to a known region of the terrain.
A team of rescuers needs to be assembled, to conduct a
search. The recent decrease in the cost of unmanned aerial
vehicles (UAVs) together with the increase in their capabil-
ities suggests the possibility that multiple (possibly a large
number of) such UAVs could play the role of rescuers in
this search. Due to the child’s mobility, and the possibility
that he/she intentionally attempts to avoid to being found,
a careful synchronization between the UAVs’ movements is
needed to guarantee that he/she will be found as soon as
possible. In this paper we present an algorithm for comput-
ing the UAVs’ trajectories, and their synchronized motion
along their trajectories, in a way that maximizes the prob-
ability that the child is found as quickly as possible while
minimizing resources such as fuel or battery consumption,
in order to increase operational search time. The process
is referred to as a pursuit, and is successful once the child
is found. This framework can also be applied to any sce-
nario where terrain searching is needed; for example, a set
of seekers searching for lost hikers, smugglers or terrorists,
or to similar military missions. For generality, we will use
the terms evader and seekers, rather than child and UAVs.

We next look at the constraints governing the search. To
find the evader, one of the seekers, must be able to detect
it. This limits the elevation above the surface and distances
between the seekers. In particular, mountains or other ter-
rain features must not visually occlude the evader from all
seekers. However, even having a line of sight to the evader
might not be a sufficient condition for finding it. For ex-
ample, at one extreme of altitude, it might be possible for
a helicopter at a high enough altitude to “see” every point
of the search area of the terrain, yet the resolution of the
optical or thermal imaging devices and poor visibility might
prevent the seeker from distinguishing enough details to de-
tect the evader. Vegetation (trees, bushes) also limits the
visibility. At another extreme, flying helicopters at ground
level is also problematic, since the regions they can search

Figure 1: Simulated search in Tucson, AZ mountains with a
chain of seekers. Each seeker is represented by a black dot and
the red ellipse it its visibility region. Overlapping the visibility
regions of each seeker forms a chain. The blue grid is the entire
defined search region.

is much smaller, and requires more maneuvers than would
be necessary at higher elevations. Thus, we assume that
there is an interval of elevations between λlow and λhigh,
measured above the terrain surface, that are optimal for the
search. We design seekers’ trajectories according to terrain
features, trying to keep them within this interval.

Proposed approach: Influenced by [8], our proposed so-
lution starts by assuming that the terrain is split into large
regions, with each being “swept” by a chain of seekers (a
formal definition is below). The notion of “sweeping” here
means that the seekers always form a chain and separate the
terrain (or a portion of the terrain) into two distinct areas,
commonly called the clean region, already searched and no
possibility of the evader occupying this area; and the con-
taminated region, yet to be searched and possibly containing
the evader. See Figure 1 for an illustration. At the begin-
ning of the process, the contaminated region constitutes the
whole terrain. As the chain moves (sweeps) the terrain, the
clean region deforms continuously (not necessarily monoton-
ically) until it constitutes the whole terrain. The seekers are
always positioned so that their visibility regions (the portion
of the terrain each one monitors at each moment) overlap, so
the evader could not “sneak” between two of them without
being noticed. It is clear that as long as the evader is in the
terrain and is (at least partially) visible, this search strategy
is guaranteed to find it, independent of its pattern of motion.
The question then becomes: given a hilly terrain, what is the
best motion of the chain of seekers to minimize expenditure
of resources, but still thoroughly search the region. Natural
criteria for optimization that come to mind include (i) min-
imizing the horizontal distance between the seeker and each
point it surveys, (ii) minimizing the horizontal distance be-
tween each seeker and neighboring seekers, (iii) minimizing
resources needed (such as fuel or battery) and (iv) minimiz-
ing time. Minimizing resources such as fuel depends on a
variety of parameters, but factors that are relevant are total
time, velocity and elevation gain. Minimizing the time is
related not only to the constraints of the seeker itself, but
also to time that the each seeker needs to spend to maintain
synchronized motion of all seekers forming the chain. Sweep-
ing the terrain could be accomplished using many geometric
patterns, possibly optimizing different cost functions.

Figure 2: Options for searching through a series of mountains
while maintaining elevation λ above the terrain: (Left) opti-
mal configurations show at time t1 and t2 to minimize elevation
changes; (Right) poor choice if elevation changes should be kept
to a minimum.

Figure 2 demonstrates two different sweeping patterns of
the same synthetic terrain. This terrain consists of 3 moun-
tain ridges, which are assumed to be at a maximum elevation
E, and the valleys in between are at elevation 0. Two nat-
ural ways to perform the sweep are by flying from south to
north (Figure 2(a)) or from east to west (Figure 2(b)). In
both cases, each seeker is always at elevation α above the ter-
rain, where λ is a constant as above. Both strategies would
sweep the terrain. However, if the major component of the
cost is the elevation gain, then the first method is probably
preferable, since each helicopter changes its height at most
once and gains a total height that for some seekers is λ, and
for the others it is E+λ as they only need to reach the ridge
of the mountain, on which it could fly horizontally. In the
second approach (Figure 2(b)) each one of the seekers needs
to gain an elevation of 3E+λ, since it needs to “climb” each
one of the three mountain ridges.

In this paper, we present a generic framework that maxi-
mizes the time for which available resources can be utilized
by a group of seekers searching in a terrain while impos-
ing minimal constraints on an evader’s actions. We explore
methods to minimize the data required to be in main mem-
ory and optimize data structures for execution speed.

Examples of seekers that our approach could be applied
to, are depicted in Figure 3. Each can be used for search
and rescue and purchased commercially. These types of
smaller UAVs are less capable than the larger variety, but
are less expensive to own and maintain, and can be outfit-
ted with a variety of sensors, and equipment. This makes
them well suited for coordinated search and rescue where
many UAVs are needed. Efficient trajectories produced by
our algorithm for different instances can be found at http:

//www.cs.arizona.edu~pmyers/mbrain.

2. PREVIOUS WORK
Our problem joins the vast literature of pursuit-evasion

problems. These problems have been studied both in geo-
metric domains [8, 13, 16] and in abstract graph settings [4,
17]; see [10, 1] for further details. In the graph setting, one
of the common settings is that both seekers and evaders are
located on the vertices of a given graph. At each time step
each one could move to an adjacent vertex. The evader is
“caught” once a seeker occupies a neighboring vertex. More
relevant to our work is [16] that suggests strategies for chas-

1Camcopter is a registered trademark of Schiebel Corpora-
tion

Figure 3: Examples of possible UAVs: (Left) Schiebel

Camcopter1 S-100, which can stay airborne for more than 6 hours

with an operational range of 45km to 180km and costs approxi-

mately $500, 000; and (Right) Aeryon Labs Inc. Scout, which can

stay airborne for up to 25 minutes with an operational range of

25km and costs approximately $50, 000.

ing moving targets in a polygonal domain. Our work is also
related to the problem of surveying a geometric domain, such
as terrains. This problem, also called “sensor placement” or
“art-gallery problem”, has been studied extensively in differ-
ent communities, stressing different aspects. In the abstract
setting, one wishes to place static guards in a terrain, such
that the smallest number of guards is needed and the region
collectively seen by all guards is maximized. See for exam-
ple, [2, 3, 7, 11, 8, 9, 12]. However, these works do not seem
to be applicable directly to the case of mobile targets.

3. PROBLEM FORMULATION
A terrain in our context is a graph of an elevation map (or

height above sea level) H(x, y). Here H(x, y) is the elevation
of the point (x, y) above sea level. We are also given the
pursuit region P , which is a rectangular region P on the
xy-plane.

A seeker is defined as a generic UAV whose location is a
point g above the terrain and is capable of detecting the
evader. Its position at time t is represented as a point
(x, y, z) where z is the elevation above sea level and z ≥
H(x, y) and (x, y) lies within the pursuit region P .

The visibility region of g, denoted Vis(g) is the set of all
points of the terrain at which an evader could be observed
by g with sufficient confidence. So a point p belongs to
Vis(g) if the segment connecting p to g does not intersect
any other points of the terrain and the distance ‖p−g‖ does
not exceed a pre-specified threshold. Note that the visibility
region is usually not a connected region of the terrain, and
actually any obstacle in the terrain (e.g. trees) might create
a region not seen by the seeker (see [5]). To be able to
study our optimization problem, some abstraction is needed.
As discussed in the introduction, the elevation of seekers
needs to lie in an interval of elevations [λlow, λhigh]. Thus,
at (x, y, z), a seeker satisfies the height constraint if and only
if λlow ≤ z −H(x, y) ≤ λhigh.

We assume that the pursuit starts at time t = 0, and de-
note the position of seeker i at time t by gi(t). Let ΠH(gi(t))
be the (unique) point of the terrain vertically below gi(t),
and let Πxy(gi(t)) be the orthogonal projection of gi(t) on
the xy-plane. Similarly, for a polygonal curve γ, let Πxy(γ)
denote its vertical projection onto the xy-plane. Consider
a configuration, ~v(t) = {g1(t), g2(t), . . . , gn(t)} of seekers
(for a fixed time t). We say that this configuration ~v(t) is a
valid configuration if the following conditions hold:

gi(t) gi+1(t)

ΠH(gi+1(t))ΠH(gi(t))

hi,i+1

Figure 4: The settings on the cross-section plane hi,i+1 described

in condition C2.

C1: ΠH(g1(t)) and ΠH(gn(t)) are on the boundary ∂P of
the pursuit region R.

C2: There is a path γi on the terrain connecting ΠH(gi(t))
to ΠH(gi+1(t)) and fully contained within (Vis(gi(t))∪
Vis(gi+1(t)) ∩ hi,i+1, where hi,i+1 is the plane normal
to the xy plane containing both gi(t) and gi+1(t). See
Figure 4.

Remark: Intuitively speaking, these two conditions implies
that the seekers imposes a partition of the terrain into two
(or more if the γis may be self-intersecting) region. The
condition C2 implies that every point on the curve γi is
seen by at least of gi(t) and gi+1(t). The requirement that
γi is on the plane hi,i+1 serves two purposes: (i) it makes
the decisions performed by the algorithm (see description
below) computationally tractable, and (ii) it also implies
that the existence of a “border” that deforms continuously
with time. Note also that if the visibility of a seeker has
a limited range, then C2 also imposes a maximum distance
between consecutive seekers.

Note that γi and γi+1 shares an endpoint (for every i).
Let γ(t) be the path resulting from the concatenation of
γ1(t), γ2(t) . . . γn(t). The rational behind our definition fol-
lows from the following lemmas:

Lemma 1. If ~v(t) is a valid configuration, γ(t) is a con-
nected curve whose endpoints lie on ∂P .

Lemma 2. If the location gi(t) is a continuous function of
t, and H is a continuous function then γ(t) is a continuous
function of t as well.

Proof. By definition, the projection Πxy(γi(t)) of γi(t)
on the xy-plane is a line segment within R. Hence Πxy(γ(t))
is a polygonal curve with ≤ n + 1 vertices. As t varies, its
vertices move continuously within P .

We call the set of all locations ~v(t) = {h1(t), h2(t), . . . , hn(t)}
for t ∈ [0, Tfinal] a schedule V = {~v(t)|0 ≤ t ≤ Tfinal} of the
seekers. We call this schedule a valid schedule if

1. ~v(t) is a valid configuration for every t,

2. At t = 0, all seekers are at the lower left corner of P
(starting state).

3. At t = Tfinal all seekers are at the upper right cor-
ner, and the total distance that gn(t) has covered in
the clockwise direction (moving counterclockwise con-
tributes a negative term), plus the total distance that
g1(t) has covered in the counterclockwise direction is
at least the length of ∂P (ending state).

Claim 3. Assume a valid schedule ~v(t), 0 ≤ t ≤ Tfinal

exists. Then the corresponding family {γ(t) | 0 ≤ t ≤ Tfinal}
changes continuously with time, always partitions the pursuit
region into two not necessarily connected regions, clean and
contaminated. At t = 0 the clean region is empty, and at
t = Tfinal, the contaminated region is empty.

Assume for every two “close enough” configurations ~v, ~u
we are given a cost function cost(~v → ~u), that depends only
on ~v → ~u. That is, the cost of the transition does not take
the history leading to a configuration into account. Define
the cost of V as the sum of costs of switching between states.

Problem Formalization: Find a valid schedule of mini-
mum cost.

Note that he ‘no-memory’ property simplifies the search
for a cheapest schedule. On the other hand, it excludes some
types of cost functions such as inertia.

4. ALGORITHMS

4.1 General Framework
To allow a computationally tractable search, we discretize

the search space by imposing an orthogonal grid M , so the
(x, y) coordinates of each seeker are confined to be a grid
point. Note that this grid is much coarser that grid repre-
senting H(x, y) (in the case of a TIN input). Such a grid and
how the seekers are confined to it is depicted in Figure 1.
The basic framework is quite simple. We first compute the
pairs graph GP (M,EP), whose vertices are the grid vertices
of M , and two vertices u, v are connected by an edge if
condition C2 is maintained. We create the set of valid con-
figurations, compute the cost between every pair of configu-
rations, and use Dijkstra’s algorithm to find cheapest path
from starting to ending states.

A simple cost function was used to keep the algorithm
as generic as possible. It only models the dominant effect
the terrain imposes, elevation change. The cost function can
easily be modified to conform to specific applications, so that
it is based on an accurate fuel model, the number of turns
or probability of detection by adversary. The cost function
used in this paper is defined as follows. For a path of the
seeker from p to p′ sum (or integrate) the positive elevation
changes along this path. Thus, for an edge (p, p′) ∈ EP

representing a valid move of a seeker from point p ∈ M , to
point p′ ∈M , we choose the best path in the neighborhood
of the segment connecting p, p′, and define ∆+(p, p′) to be
the cost of this path. In particular, if the terrain elevation is
given only at vertices of M , then ∆+(p, p′) = max{0,H(p′)−
H(p)}. For a pair of configurations ~u,~v, we define

COST(~u,~v) =
n∑

i=1

{∆+(p′i, pi)+C‖Πxy(pi)−Πxy(p′i)‖∞+C′},

where ~u = {p1, p2, . . . , pn}, ~v = {p′1, p′2, . . . , p′n}, ‖p′i − pi‖∞
is the L∞ distance between them, and C,C′ are small con-
stants. The rationale is that the fuel requirement of (posi-
tive) elevation gain dominates the other factors.

The cost function treats each seeker’s movements inde-
pendently; therefore a pre-compute step can be performed
using one seeker for all possible transitions satisfying C2.
This reduces the number of computations by replacing the
need to calculate the transition of each seeker in a configu-
ration transition with a table lookup.

4.2 Further Assumptions and Implementation
Details

In our preliminary implementation, several simplifying as-
sumptions are made, to help reduce the search space. We
replace C2 by C2’ which is simplified.

C2’: The horizontal distance between gi(t) and gi+1(t)
cannot exceed some predetermined distance D.

To further restrict the search, we express bounds on the
maximum velocity, by limiting the L∞ distance max{|x −
x′|, |y−y′|} where (x, y) and (x′, y′) are two consecutive pro-
jections on the xy-plane of a single seeker. Without loss of
generality, we assume the maximum horizontal L∞ distance
a UAV might cover at each step is D times a small con-
stant (taken as 2 in our implementation). Hence, a seeker
can validly transition to 24 neighboring points if D = 2.
To be precise, our algorithm considers the graph G(V,E)
where V represents the set of all valid configurations, and E
represents all valid transitions between configurations. We
assume that the edge connecting two valid configurations
(~u,~v) ∈ E if there is a valid transition from ~u to ~v . Finally
we assume that λlow = λhigh, so there is one specific height
λ above ground level which is optimal for the search.

It is important to note here that the number of possible
valid configurations in the graph can be quite large, easily
exceeding the capacity of the cache of state-of-the-art desk-
tops. Hence we cannot store the entire configuration space
explicitly in main memory, causing paging issues. In Sec-
tion 4.3, we explore approaches to reduce the search space.

The unit distance is chosen using multiple factors: size
of the visibility regions, size of terrain features, number of
seekers needed and the granularity of movement required. If
the unit distance is too large to accurately match details of
the topology or if the area to be searched is too large then
the entire region can be broken into sub-regions. Each sub-
region can then be searched independently in some order
that matches operational requirements.

First, we explain how to compute the cost of a single seeker
movement from point p ∈M to a point p′ ∈M . Recall that
M is sparse so different trajectories might lead between these
points. We use Dijkstra to find the cheapest trajectory (of
this seeker alone), among the paths that fully lies within
the disk whose diameter is Πxy(p),Πxy(p′). We repeat this
process for all pairs of points p, p′ for which are valid.

Next, we describe the search in the configurations graph.
Due to the combinatorially huge number of configurations
several modifications have been made: the transition graph
is not pre-computed but built“on the fly”which is equivalent
to declaring all transition costs in the complete graph to
infinity (as in the original Dijkstra algorithm); additional
methods were used to “branch-cut” the transition graph to
reduce the number of configurations the algorithm has to
process; and records in the solution graph were written to
the disk to limit the amount of memory used. Following
the standard Dijkstra framework, we maintain during the
algorithm a set S of configurations to which the optimal
path is found. We loosely follow the notation of [6]. We use
a hash table H to store discovered configurations. Some of
the elements of S itself are stored in H, while others (details
provided below) are stored in a B-tree file F .

For each configuration in H or F , we store the following:
seekers’ locations, its cost, its parent, whether it is in S and
some fields to aid data structure management, see Figure 5.

256

192

128

64

0 32 64

g1 g2 g3 g4 g5 g6 g7 g8

g9 g10 g11 g12 g13 g14 g15 g16

cost parent

indexnext

flags

Figure 5: Record for configuration when inserted into tran-
sition graph. Units are in bits.

The hash function used was

h(~u) =

(
n∑

i=1

Aiui[x] +Biui[y]

)
mod HLength,

Here ui[x] and ui[y] are the coordinates of seeker i in the con-
figuration ~u and Ai, Bi, and HLength are all prime numbers.
It uses the configurations’ locations in the terrain graph as
the key into the hash table. The minimum priority queue Q
used by Dijkstra is implemented as a heap, where each ele-
ment in Q points to its parent. The implementation closely
follows the description in [6]. Additionally, configurations
are removed from the hash table H when the storage limit
is reached. This entry “settle” attempts to minimize the in-
memory size of H, storing entries already in S in file F . This
is done because the in-memory requirements become quite
large with a modest number of seekers, see Section 4.3 for
further discussion on storage requirements. This idea was
adapted from [15]. To mark a configuration ~u for removal
from H it must: (i) be in solution set S, and (ii) have all
its neighbors in S. Hence, for a configuration ~u, the number
C[~u] of neighbors of ~u, not in S, is tracked for each configu-
ration as the algorithm progresses. When the count reaches
0, the configuration is removed from H and added to the file.
The file is needed for efficient retrieval of the optimal path
when the algorithm terminates. Care is taken to minimize
its representation in memory, to reduce the need for paging.

The record placed in the transition graph can be seen in
Figure 5. It was defined as a packed C struct with a pre-
allocated maximum number of 16 seekers. The first 128 bits
was used to identify the coordinates of the seekers. The next
64 bits were used to record the cost of the configuration and
the configurations parent, respectively. The next 32 bits was
to aid in storage of the record in the hash table. The next
32 bits were used to store the index of the record in the
minimum priority queue. This aided in the DECREASE_KEY()

function. The last 8 bits were used to also aid in Dijkstra’s
algorithm by determining if the configuration was in the
solution set.

When the pre-calculation and initialization steps com-
plete, the algorithm then transitions into search (see Proce-
dure 1). When the search is started the special ~s configura-
tion is added to the transition graph, which is implemented
using a hash table H, and its cost is set to 0. This con-
figuration is then added to the minimum priority queue Q.

The SETTLE function (Procedure 2) marks each configura-
tion to be removed fromQ with a count of transitions that do
not connect back into S, i.e. all neighbors of ~u that are not
in the solution set yet. Then for each configuration transi-

Procedure 1 SCHEDULE_GENERATOR(G,~s,~t): Main search
function to find optimal schedule.

Q← φ and H ← φ
INSERT(Q,~s, 0) and ADD(H,~s)
while Q 6= φ do
~u← TOP(Q) and S[~u]← true

if ~u = ~t then
return solution

N ← GENERATE(~u) {get list of transitions}
C[~u]← |N /∈ S|
for each ~v ∈ N do

if ~v ∈ S then
SETTLE(~v, F ile,H)

else
RELAX(~u,~v,Q)

tion the count is updated based on which configurations are
already in S. When the count reaches 0, this signals removal
from the hash and addition to the file.

Procedure 2 SETTLE(~v, F ile,H): Removal of Configura-
tion from Hash table when all neighbors enter solution table.

C[~v]← C[~v]− 1
if C[~v] = 0 then
ADD(File, ~v)
REMOVE(H,~v)

The transition graph is not pre-computed when the algo-
rithm starts and hence the relax step of Dijkstra’s algorithm
is changed from the original and contains minimum priority
queue calls to maintain Q; see Procedure 3.

Procedure 3 RELAX(~u,~v,Q): Relaxation of neighbors of
input configuration.

if ~v /∈ Q then
INSERT(Q,~v, d[~u]+ COST(~u,~v))
π[~v]← ~u

else if d[~v] > d[~u]+COST(~u,~v) then
DECREASE(Q,~v, d[~u]+COST(~u,~v))
π[~v]← ~u

The key to this algorithm is the GENERATE procedure con-
tained within the search; see Procedure 4. It searches for
all transitions available to a given configuration. The cur-
rent implementation only moves one seeker at a time when
discovering transitions. While it might seem more sensible
to allow each configuration to find the transitions without
this constraint, it turns out that this method, while present-
ing more configurations to the search algorithm, requires
fewer I/O operations while not narrowing the search space
or jeopardizing optimality. The largest contributor to run-
time is the page swapping that occurs when the number of
configurations stored in H exceeds the amount of main mem-
ory. This leads the search for efficient I/O and data storage
techniques to eliminate the need to keep all configurations
in memory, rather than optimize the GENERATE procedure.

4.3 BRANCH CUTTING
We implement several types of filtering (branch cutting)

techniques to reduce the number of configurations that need

Procedure 4 GENERATE(~v): Generate the neighbors of an
input configuration.

N ← φ
for each p ∈ ~v do
~v′ ← replace p with p′ in ~v
if VALID(~v′) then
d[~v′]←∞
if ~v′ /∈ H then
ADD(H,~v′)

N ← N ∪ ~v′
return N

not be considered, thus reducing the search space.

Self-Intersections: The first type of filtering is based on
the following observation. Let P (t) be the polygonal path
obtained by connecting the projections on the xy-plane of
the jth and (j + 1)th seekers at time t.

Observation 1. If P (t) is simple (does not have two cross-
ing edges) then, possibly after re-labeling the seekers, with
high probability, P (t+ 1) is crossing free as well.

The basis for this observation is the following lemma which
pertains to the continuous case when the seekers are not re-
stricted to lie on the grid and we consider a continuous ele-
vation map of P . We also do not consider the limitation on
the velocity of the seekers. In a schedule consider two con-
figurations ~v(t) and ~v(t+k) and assume that at time t, P (t)
is not self-intersecting. Also, let P (t+k) be self-intersecting.
Under these conditions.

Lemma 4. There exists a configuration ~w(t + k) corre-
sponding to the seekers’ positions at time t+k such that the
same region is swept and

COST(~v(t), ~v(t+ k)) ≥ COST(~v(t), ~w(t+ k)).

Proof. Let there be a crossing between the movements
of two seekers i and j between the two configurations. Let
the intersection point of the two trajectories be the point p.
Now, moving seeker i from hi(t) to p and then continuing to
hj(t+k) in ~v(t+k) and moving seeker j from hj(t) to p and
continuing to hi(t + k) results in a configuration ~w(t + k)
with no crossings. Clearly, the cost of reaching ~w(t + k)
is the same as that of the costs of the original trajectories.
Thus, the lemma is proved.

Remark: Note that the correctness of this lemma re-
sulted from the symmetry between the seekers — to follow
a specific trajectory, each of them needs the same amount
of resources. In contrast, if different seekers have different
capabilities, then, during the optimal schedule two seekers
might switch places to enable, say, a seeker that is short on
fuel to avoid a particularly hilly part of the terrain.

Based on Observation 1, we can constrain the search to
consider only configurations with no self-intersections. Sec-
tion 5 includes results showing the computational reduc-
tions.

Pinching: A different but related part of configurations are
the ones demonstrating pinching defined as the case when
some hi(t), hj(t), for j > i + 1 are located above the same
grid-point, while hi+1(t) is located elsewhere.

Figure 6: Prohibited Configurations, (Left) crossing seekers
making a non-simple path, (Right) pinching

A second class of branch cutting was added to reduce the
number of configurations stored at the hash table entry por-
tion of algorithm. Figure 6(a) illustrates a crossing between
configurations that are non-simple and produce a redundant
clean region colored gray. Even so, crossings can be advan-
tageous. During a crossing, seekers can be swapped and re-
labeled, in an attempt to rebalance the energy consumption
of the chain. This reconfiguration is assumed, given the cost
function, which minimizes energy of the sum. Hence, these
configurations are removed from the possible configurations
allowed. Figure 6(b) illustrates pinching configurations that
add no area to the “clean” side.

A natural question is whether guards should be allowed
to move backward. That is, for a configuration ~u(t) at some
time t, for any ∆t, it is tempting to constrain ~u(t+∆t) such
that the paths γ(t) and γ(t+ ∆t) do not cross. We call such
configurations “crossing” configurations. This implies that
no guards of ~u(t) can move “backward” so that some of the
clean region becomes contaminated. Note that the paths
γ(t) and γ(t+ ∆t) may still have overlapping portions. The
author’s intuition is that this branch cutting heuristic would
not jeopardize the quality of the solution for most realistic
scenarios. However, cases exist where this claim is definitely
not true. In particular,

Theorem 5. There is a terrain that that could be searched
by 4 seekers flying at elevation λ, but if we do not allow
crossing configuration, then at least one of the seekers should
reach higher elevation.

The proof is removed, due to lack of space. It is related to
results on searching polygons by two-guards [14].

5. EXPERIMENTAL RESULTS
The algorithm was coded in C++ using gnu C++ and used

Berkeley DB2 for storage of settled configurations. It was
run on an Intel Core i7 860 @2.80 GHz with 8 GB of RAM
running Ubuntu Linux 10.04. Examples of our algorithm can
be viewed at http://www.cs.arizona.edu/people/pmyers/
mbrain. To keep the runtime of this algorithm reasonable
the grid size was limited to a 16×16 and a maximum of 7
seekers. Valid distance D was set to 2 grid points. The fixed
cost constant C′ was set to 0.01 units. To establish good

2Berkeley DB is an efficient and cache-aware B-tree data
structure, used as a fast and long-term storage for stored
configurations

visibility by each UAV, we would assume that it is above
ground. So we assume that its flying trajectory should be
set so its height is 1 unit distance above the terrain.

5.1 Synthetic Terrains
To demonstrate the behavior of the algorithm we have

generated 4 synthetic terrains (see Figures 8 though 11): (i)
a set of parallel ridges that extends horizontally as shown
in Figure 7 (horizontal ridges), (ii) a set of parallel ridges
that extends vertically (vertical ridges), one M -shaped
ridge (M-shaped ridge), and (iv) a pair of ridges that are
diagonal to the direction of motion (diagonal ridges). In
each case, the graph M with no accompanying fine grid δ is
constructed “by hand”. The cost function is then modified
to only operate on the coarse graph. The elevation of all
the large unconnected discs represents ridge peaks with a
height of 3 units. The smaller discs represent the “foothills”
associated with the ridge peaks, with an elevation of 1.5
units. The portions of the grid with no discs are at “sea-
level” with zero elevation. The connected blue discs repre-
sent configurations, with a few snapshots of optimal sub-
plots (a) through (f) showing key configuration transitions.

Figure 7: A synthetic
terrain consisting of two
parallel ridges that ex-
tend horizontally.

In each example the con-
figuration starts in the lower
left hand corner of the graph
and expands to align it-
self with the terrain feature.
The alignment is dictated by
the cost equation that at-
tempts to minimize elevation
changes. This cost equation
represent our simplified fuel
model. Each execution at-
tempt to limit the number
of positive elevation changes
each seeker makes, in essence
attempting to reduce fuel us-

age, and lengthen operational time of the search. Because
the terrain features in these examples cannot be avoided by
the configuration search, it minimizes the number of seekers
that must “climb” up those features. Hence, what occurs is
that some of the seekers get elected to climb onto the terrain
ridges, allowing the others to move around them. This opti-
mizes the energy use of the set of seekers, and subsequently
maximizing operation time. When the terrain feature has
been searched, the configuration then collects at the upper
right hand corner of the graph.

In Figure 9, four seekers have been “elected” to climb the
foothills rather than one per peak. It turns out that this
solution has the same cost as a single seeker climbing each
peak, as the foothills are exactly half the height of the peak.
Hence the result is still optimal, given the cost function.

Figure 12 demonstrates that a naive schedule where each
seeker climbs to the ridge height is not optimal. This for
example would be the case if they are all restricted to move
along a straight line. Instead, in Figure 12, only two seekers
(and one edge connecting them) climb above the minimum
elevation, and even these two reach only the height of the
foothill (depicted by medium-dized disks). This is an in-
teresting example showing that to reach optimality, some
seekers must stay still whlie other move. It also shows that
the criteria for conclusion (that the terrain is clean) must

be based on on the total signed distance the seeker moves,
rather than just the meeting point on the upper right corner.

The run-time of the algorithm was also examined, as seen
in Tables 1 through 4. Because of the branch-cutting used
to limit the number of configurations the search procedure
“sees”, rows are shown with and without the optimizations.
The tables show the number of configurations added to the
hash table, how many configurations were marked for stor-
age as a result of SETTLE, and the execution time.

5.2 Real Terrain
The terrain data was gathered from the ASTER Global

Digital Elevation Model Explorer[19]. It provides DEM3

data at 30 meter resolution. See Figure 13. The configura-
tion starts in the lower left hand corner of the graph, aligns
itself with the terrain feature and begins cleaning the map
region. When the terrain feature has been cleared, the con-
figuration then collects in the upper right hand corner of
the map. This result is consistent with the synthetic terrain
solutions explained in the previous section.

6. EXTENSIONS AND IMPROVEMENTS

6.1 Further Approaches
To use all of the benefits of the the visibility condition C2

from Section 3, we may precompute all valid pairs of vertices
of M . This could be obtained extremely fast with the use
of GPU and shader programming.

Our solutions assume a“memory-less” setting – the cost of
reaching from a specific configuration ~u to another, does not
depend on the cost of reaching ~u. This limits the algorithm,
since it cannot take into account inertia and states of the
vehicles performing the search. It seems that a simple dy-
namic programming algorithm could overcome this barrier,
but this is left for future study.

One might prefer to seek solutions optimizing multi-criteria
cost functions, rather than a single scalar. For example,
to find the most fuel-efficient search but whose duration is
bounded by a threshold. Similarly, one might seek a schedule
that minimizes the maximum positive elevation any seek-
ers gain. As a rule, multi-criteria shortest path problems
are known to be NP-Hard, but efficient approximation tech-
niques exist [20]. It would be interesting to see how they
perform in our setting. One might also seek other cost func-
tions that the one we have experimented with. For example,
a natural cost function is the maximum of the total elevation
gain of any UAV, rather than the sum. Small maximum ele-
vation gain implies a longer duration of the whole swarm be-
fore refueling/recharging is needed. This problem is closely
related to multi-criteria shortest path problem which is also
NP-Hard but for which approximation techniques exist [18].
This line of work is left as one possible future study.

6.2 Ridge-Driven Algorithms
We consider the ridges of a terrain as guidelines to seekers’

trajectories, i.e., we look of a schedule at which each seeker
flies over a ridge. This is reasonable, since any point on
the ridge sees more than any other in its vicinity. We still
use the previous assumptions — seekers form a chain whose

3Digital Elevation Model: a grid of elevation values indexed
by latitude and longitude used to describe a section of ter-
rain.

Table 1: Horizontal ridges on a 9×9 grid with 7 seekers
(Figure 9 Left).

Branch-cutting # config. # stored Time (s)
None 82,292,560 5,269,161 613.15
No self intersec-
tion

65,336,071 4,984,307 661.03

No pinching 330,379 132,535 2.37
No pinching nor
self-intersection

329,963 132,592 3.68

Table 2: Vertical ridges on a 9 × 9 grid with 7 seekers
(Figure 9 Right).

Branch-cutting # config. # stored Time (s)
None 83,285,762 5,271,094 628.18
No self intersec-
tion

65,337,247 4,987,228 618.23

No pinching 287,775 124,795 2.23
No pinching nor
self-intersection

286,303 124,714 2.40

Table 3: M-shaped ridge on a 15× 6 grid with 5 seekers
(Figure 10).

Branch-cutting # config. # stored Time (s)
None 440,787 90,327 2.14
No self intersec-
tion

338,457 83,183 2.05

No pinching 17,156 8,704 0.08
No pinching nor
self-intersection

17,156 8,704 0.08

Table 4: Diagonal ridges on a 15× 6 grid with 5 seekers
(Figure 11).

Branch-cutting # config. # stored Time (s)
None 470,754 121,179 2.55
No self intersec-
tion

430,144 112,624 2.52

No pinching 19,687 16,172 0.13
No pinching nor
self-intersection

19,687 16,172 0.14

trajectories are coordinated so conditions C1 and C2 from
Section 3 are present. So we are left with the need to design
an optimal algorithm for this subproblem — which seeker
follows which ridge. The main reason to use ridges as a
leading term is that their order is preserved independent in
the location — two ridges could not cross each other. Hence
it suits well to dynamic programming techniques.

Algorithm Sketch: We note that in many cases, the ridges
of the terrain form a topological tree, or at least a small num-
ber of disjoint trees. Consider one such tree T , whose leaves
are (from left to right) v1 . . . vm and assume n < m. We need
a leaf assignment for each one of the seekers g1 . . . gn which
respects their order; if gi is assigned to leaf vj , then seeker
gi+1 is assigned to one of the leaves vj+1..., vm. The seeker
then would follow the ridge to the root of T (while satisfying
conditions C1, C2 together with the other seekers).

As is usually the case for dynamic programming algo-
rithms, we maintain a table Tk of size m × m for each
k = 1, . . . , n, where Tk[i, j] is the cheapest schedule that
uses k seekers and cleans the ridges ending at vi . . . vj . To
compute Tk[i, j], we assume recursively that the solutions
to all table entries Tk′ [i′, j′] for which |j′ − i′| < |j − i| and
k′ < k have been computed, and sum the cost. Details are
obvious and omitted. We finally return Tn[1,m]. It is not
hard to see that the total running time is O(n3).

7. CONCLUSION
In this paper, we propose a different approach to the

pursuit-evasion problem on terrains. This approach pro-
vided an algorithm to plan the trajectories of a chain of seek-
ers so that an evader is located with high probability. Branch
cutting and I/O-efficient data structures were explored to
decrease the run-time of the algorithm. Experimental re-
sults were presented for both synthetic and real terrains.
This is the start of exploration in this area and there are
numerous ways to extend our algorithm: (i) parallelization
or “distributization” of the algorithm; exploring distributed
algorithms would be helpful in enabling networked UAVs to
execute the search algorithms, (ii) utilization of other search

algorithms such as A∗-search, (iii) cost functions that match
other operational constraints and possible operation-specifc
optimizations, (iv) more elaborate UAV models that calcu-
late fuel usage with greater accuracy, and (v) automation of
the terrain graph based on optimization parameters.

We have also proved important characteristics of the op-
timal solution, enabling to maintain the search space un-
der control. In addition, we have proposed a much faster
polynomical-time algorithm that uses ridges of the terrain
to guide the search.

8. REFERENCES
[1] B. Alspach. Searching and sweeping graphs: a brief

survey. Le Matematiche, 59(1, 2):5–37, 2006.

[2] T. Baumgartner, S. P. Fekete, A. Kröller, and
C. Schmidt. Exact solutions and bounds for general
art gallery problems. In Proc. 2010 SIAM Workshop
on Algorithm Engineering and Experiments, pages
11–22, 2010.

[3] B. Ben-Moshe, M. J. Katz, and J. S. B. Mitchell. A
constant-factor approximation algorithm for optimal
terrain guarding. In Proc. 16th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 515–524,
2005.

[4] R. Borie, C. Tovey, and S. Koenig. Algorithms and
complexity results for pursuit-evasion problems. In
Proc. 21st International Joint Conference on Artificial
intelligence, pages 59–66, 2009.

[5] R. Cole and M. Sharir. Visibility problems for
polyhedral terrains. J. Symb. Comput., 7(1):11–30,
1989.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms (3. ed.). MIT
Press, 2009.

[7] M. C. Couto, P. J. de Rezende, and C. C. de Souza.
An exact algorithm for minimizing vertex guards on
art galleries. Int. Trans. Oper. Res., 18(4):425–448,
2011.

[8] A. Efrat, L. Guibas, S. Har-Peled, J. S. B. Mitchell,

(a) (b) (c)

(d) (e) (f)

Figure 8: Intermediate steps of the results of our al-
gorithm for sweeping terrains consisting of horizontal
parallel ridges. The large disks indicate an elevation
of 3 units and the smaller disks 1.5 units. (a) seek-
ers start moving up to align to ridges, (b) one seeker
moves to the ridge top, (c) a second guard moves to
the ridge top, (d) the expanded configuration moves
across the terrain graph along ridge tops and valleys,
(e) both guard move to boundary to finish search, (f)
entire search area has been swept.

(a) (b) (c)

(d) (e) (f)

Figure 9: Sweeping a terrain consisting of vertical par-
allel ridges. Note the difference in the sweeping pattern
from Figure 8. (a) seekers start expanding right to align
with ridges. (b) one seeker moves to the first ridge, (c)
two seekers have elected to straddle the first ridge, (d)
a second set of seekers move to the second ridge, (e)
the expanded configuration moves along the ridge line,
(f) most of the area has been swept and the seekers are
collecting in the upper right hand corner.

(a) (b) (c)

(d) (e) (f)

Figure 10: Sweeping a terrain consisting of one wiggly shaped ridge, (a) the seekers expand up to align with ridge, (b) one seeker moves
onto the ridge, (c) the expanded configuration moves along the ridge with only 1 seeker on the ridge, (d) the search continues with only
one seeker on the ridge and the expanded configuration moving in coordination, (e) seeker 2 moves off of the ridge and moves down to
allow pursers 3 and 4 to sweep around the ridge rather than moving up the ridge, (f) most area has been swept and pursers are collecting
in upper right corner.

(a) (b) (c)

(d) (e) (f)

Figure 11: Sweeping a terrain consisting two diagonal ridges, (a) seekers expand to align with ridge, (b) one purser moves onto the
ridge, (c) the expanded configuration moves right with only one seeker on the ridge, (d) the configuration aligns with seconds ridge, (e)
the expanded configuration moves right with only one seeker on the second ridge, (e) seeker 2 moves off of the ridge and down to allow
seekers 3 and 4 to move around the ridge instead of moving onto the ridge.

(d) (e) (f)

(a) (b) (c)

Figure 12: An interesting example where a naive approach would be suboptimal. Note that seeker 2 is stationary for most of the
schedule and the rest of the seekers’ chain “revolves” around 2.

(a) (b) (c)

(d) (e) (f)

Figure 13: Real terrain located in Washington State: (a) configuration detects ridge orientation and starts expanding North, (b) with
configuration fully expanded it starts moving east, (c) continues east with full expansion, (d) end of ridge is being approached and
configuration aligns with it, (e) alignment in preparation to collect all guards in North-East corner, (f) fully off ridge and collection of
seekers occurring. This example can be seen at http://www.cs.arizona.edu/people/pmyers/mbrain.

and T. M. Murali. New similarity measures between
polylines with applications to morphing and polygon
sweeping. Discrete Comput. Geom., 28(4):535–569,
2002.

[9] A. Efrat and S. Har-Peled. Guarding galleries and
terrains. Inf. Process. Lett., 100(6):238–245, 2006.

[10] F. V. Fomin and D. M. Thilikos. An annotated
bibliography on guaranteed graph searching. Theor.
Comput. Sci., 399(3):236–245, 2008.

[11] O. Franklin and C. Vogt. Multiple observer siting on
terrain with intervisibility or lo-res data. In In XXth
Congress, International Society for Photogrammetry
and Remote Sensing, pages 12–23, 2004.

[12] W. R. Franklin and C. K. Ray. Higher isn’t necessarily
better: Visibility algorithms and experiments. In
Advances in GIS Research: Sixth International
Symposium on Spatial Data Handling, pages 751–770.
Taylor & Francis, 1994.

[13] L. Guibas, J.-C. Latombe, S. Lavalle, D. Lin, and
R. Motwani. Visibility-based pursuit-evasion in a
polygonal environment. In F. Dehne, A. Rau-Chaplin,
J.-R. Sack, and R. Tamassia, editors, Algorithms and
Data Structures, volume 1272 of Lecture Notes in
Computer Science, pages 17–30. Springer Berlin /

Heidelberg, 1997.

[14] C. Icking and R. Klein. The two guards problem.
Inter. J. Computational Geometry and Applications,
2(3):257–285, 1991.

[15] R. E. Korf, W. Zhang, I. Thayer, and H. Hohwald.
Frontier search. J. ACM, 52(5):715–748, 2005.

[16] S. LaValle, D. Lin, L. Guibas, J.-C. Latombe, and
R. Motwani. Finding an unpredictable target in a
workspace with obstacles. In Proc. 1997 IEEE
International Conference on Robotics and Automation,
pages 737–742, 1997.

[17] N. Megiddo, S. Hakimi, M. Garey, D. Johnson, and
C. Papadimitriou. The complexity of searching a
graph. J. ACM, 35(1):18–44, 1988.

[18] S. Misra, G. Xue, and D. Yang. Polynomial time
approximations for multi-path routing with bandwidth
and delay constraints. In Proc. 28th IEEE Conference
on Computer Communications, pages 558–566, 2009.

[19] USGS. Aster gdem explorer.
http://demex.cr.usgs.gov/DEMEX/.

[20] G. Xue, W. Zhang, J. Tang, and K. Thulasiraman.
Polynomial time approximation algorithms for
multi-constrained qos routing. IEEE/ACM Trans.
Netw., 16(3):656 –669, 2008.

