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A recurrence relation gives the terms of a
sequence as a function of previous terms. For ex-
ample, the Fibonacci sequence is given by the
recurrence

an = an–1 + an–2

with the initial terms a1 = a2 = 1 to get the sequence
started. Different initial terms produce different
but related sequences.

The number of initial terms required is deter-
mined by how far back in the sequence terms are
specified — called the order of the recurrence rela-
tion. For example,

an = an–1 + 2an–3

is a recurrence relation of order 3 and requires
three initial terms, a1, a2, and a3, to specify the
sequence it produces.

The examples given above are linear recur-
rence relations with constant coefficients — LRRCs
for short — and are instances of the general form

an = c1an –1 + c2an –2 + … + ckan –k (1)

where only the first powers of previous terms are
used and the coefficients are constant.

There are other kinds of recurrence relations.
For example,

an = a2
n–1 + a2

n –2 + an–4

is a quadratic recurrence of order 4, while

an = an–1 + nan –2

is a linear recurrence of order 2 but with a non-
constant coefficient.

LRRCs are important in subjects including
pseudo-random number generation, circuit de-
sign, and cryptography, and they have been stud-
ied extensively. LRRCs also have periodic residue
sequences [1], which is the main reason for our
interest in them. Despite the importance of LRRCs
and the work done on them, much about them
remains unknown. Very little of a general nature is
known about nonlinear recurrence relations. We’ll
focus mainly on LRRCs.

LRRCs

LRRC Canonical Form

Equation 1 above shows the canonical form

for LRRCs. This form does not provide for a con-
stant term, as in

an = an–1 + 1

The reason for not having a constant term in
the canonical form has to do with manipulations of
LRRCs in which a constant term would require
special handling.

A linear recurrence of order k with a constant
term can be converted to a linear recurrence of
order k + 1 in canonical form. Consider the example
above:

an = an–1 + 1 (2)

From this it follows that

an–1 = an–2 + 1 (3)

Subtracting Equation 3 from Equation 2, we get

an – an–1 = an–1 + 1 – an–2 – 1

and hence

an = 2an–1 – an–2

which is in the required canonical form.

Problems Related to LRRCs

There are many interesting problems related
to LRRCs. In the article on residue sequences, we
touched on the properties of their residue se-
quences. Other problems of interest are:

•   computing the sequence for an LRRC

•   determining if a sequence can be represented
by an LRRC and, if so, finding it

•  solving an LRRC to produce an explicit for-
mula for its nth term

An LRRC Generator

An LRRC can be completely characterized by
two lists: one containing its coefficients and an-
other containing its initial terms. For an LRRC of
order k, both lists are of length k. For example, the
recurrence relation

an = an–1 + 2an–3

has the coefficient list [1, 0, 2]; the initials list, as
always, determines the actual sequence. For ex-
ample, the initials list [1,1,0] produces the sequence

1, 1, 0, 2, 4, 4, 8, 16, 24, 40, 72, 120, …
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Finding LRRCs

Many sequences can be represented by LRRCs,
even if the recurrences are not obvious.

The difference method often works and it can be
done by hand or with a simple program [2]. This
method starts with a row containing the terms of
the original sequence. The second row consists of
the differences of successive terms in the first row,
and so on. The rows are labeled ∆0,  ∆1,  ∆2, … .
Here’s an example:

∆0 1 7 18 34 55 81 112 148 189 …

∆1 6 11 16 21 26 31 36 41 …

∆2 5 5 5 5 5 5 5 …

∆3 0 0 0 0 0 0 …

If a constant row appears, as it does in this ex-
ample, the process is complete, there is an LRRC,
and it can be obtained by using Equation 4 below,
which is a consequence of the way the differences
are computed:
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where i  is the binomial coefficient
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To get an LRRC in canonical form, it is neces-
sary to go to a row of zeroes; ∆3 in this case.
Therefore, by Equation 4

Expanding this, we get
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and hence

a a a an n n n+ + +− + − =3 2 13 3 0

from which we get the LRRC

a a a an n n n= − +− − −3 31 2 3

The initial terms are, of course, the first three in ∆0.

Any recurrence derived from a finite number
of terms is, of course, conjectural.

Explicit Formulas for LRRC Terms

Any sequence that leads to a 0 ∆ sequence can
be represented by a polynomial in n. Conversely,
all polynomials in n can be represented by a single
LRRC; the coefficients of the polynomial only af-
fect the initial terms for the LRRC.

This follows from another equation that re-
sults from the method of differences:
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From this, we can obtain an explicit formula
for the nth term of the corresponding LRRC. Set-
ting m to 1 in Equation 5 gives

an
n n n n

+ = ( )+ ( )+ ( )+ ( )1 1 6 5 00 1 2 3

(1, 6, 5, and 0 are the leading terms in ∆0, ∆1, ∆2, and
∆3.) This evaluates to

a n nn+ = + +1
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