
1 March 31, 2004; last revised August 1, 2004

Program Visualization and Weave Design

Computer programmers face a daunting
task in finding errors and inefficiencies in large,
complex programs. One technique that has
been used effectively is program visualization
[1-3], in which the activities of a running pro-
gram are presented as evolving visual images.
This allows the powerful human vision sys-
tem to detect patterns and note anomalies that
would be lost in equivalent textual informa-
tion.

Various methods have been used in pro-
gram visualization. Color typically is used to
identify types of program activity, while size
and shape are used to represent magnitudes.
Some visualization techniques are adaptations
of conventional graphic presentations, like pie
charts and bar graphs. Other techniques use
metaphors, like exploding stars and storms, to
trigger recognition. Others are abstract and
appeal to the right side of the brain.

The third page of this article shows some
snapshots from program visualization.

What does all this have to do with weave
design? The connection comes from the fact
that program activity consists of a sequence of
events. These events often can be characterizes
by a type and an associated value. For ex-
ample, reading and writing strings are differ-
ent events in which the lengths (not the spe-
cific characters) may be of interest. Sequences
of events can be separated into two parallel
sequences: type sequences and a value se-
quences.

For drafting, these sequences can be inter-
preted as threading or treadling sequences
with associated color sequences. A useful in-
terpretation needs to take into account the
ranges of types and values. There usually are
comparatively few different types, while val-
ues vary greatly in magnitude. For this reason,
it works best for types to be associated with
shafts and treadles and values with color —
rather the opposite of program visualization.

There are several problems in using event
sequences for drafting.

 One is that typical event sequences are
very long — many times the number of ends or
picks for a practical draft. A portion of the
event sequence therefore needs to be used. It is
best not to use the initial part of an event
sequence, because it comes from program ini-
tialization and may not be typical. The same
consideration applies to the end of an event
sequence, where program termination also may
not be typical of program activity.

Another problem is that event sequences
often contain runs of the same event. These
would translate into adjacent duplicates in
threading and treadling sequences. The sim-
plest way to solve this problem is to delete
events with successive identical types. Adja-
cent duplicates in colors do not, of course,
present a structural problem.

Finally, there may be a problem with the
range of values, which may far exceed the
numbers of different colors that are possible,
much less desirable. One solution is to catego-
rize values by range. For example, if values
range from 1 to 1,000 and five colors are to be
used, values from 1 to 200 can be interpreted as
the first color, values from 201 to 400, the
second color, and so on. There is, incidentally,
no perception in the human visual system of a
relationship been color and magnitude, so there
is no point in trying to convey this in a weave.
An example of a draft based on an event se-
quence appears on the last page of this article.

This approach to drafting is somewhat
akin to code drafting to commemorate a word
or phrase. With program visualization, what is
commemorated is a segment of computational
activity in a running program.

This can be taken as an example of how
far-fetched drafting techniques can be. And
there is the problem that getting event se-
quences is a job for a programming specialist.

2 March 31, 2004; last revised August 1, 2004

References

1. Program Visualization Research at IBM:
 http://www.research.ibm.com/pvres/

2. Program Visualization -- Overview:
 http://www.cs.arizona.edu/icon/progvis/lectures/intro.htm

3. An Overview of Program Visualization Tools and Systems:

 http://portal.acm.org/citation.cfm?id=275358&dl=ACM&coll=portal

Ralph E. Griswold
Department of Computer Science

The University of Arizona
Tucson, Arizona

© 2004 Ralph E. Griswold

3 March 31, 2004; last revised August 1, 2004

Snapshots of Program Visualization

4 March 31, 2004; last revised August 1, 2004

A Chess-Playing Program in Action

