
1 April 6, 2002; last modified August 2, 2004

Designing with L-Systems, Part 1:

String Rewriting Systems

Strings

A string is a sequence of characters, such as a
word, a phrase, or a telephone number. The char-
acters may be letters, digits, punctuation marks,
dollar signs, and so forth. Uppercase letters are
used in examples to make them stand out, as in
ABCBA.

The characters in strings may or may not have
meanings associated with them. For the time be-
ing, they will just be abstract symbols. Strings may
of course, contain patterns; in fact, this is the major
interest here. For example, the string ABCBA is a
palindrome, reading the same way forward and
backward. Another example is DEDEDEDE, which
consists of four repetitions of DE.

A string within a string is called a substring.
For example, DE, ED, and DED are among the
many substrings in DEDEDEDE.

The length of a string is the number of charac-
ters in it. For example, the length of ABCBA is 5.
The empty string, consisting of no characters, has
length 0. The empty string is denoted by Θ.

A single character is a one-character string.
Concatenation consists of appending one string

to another. For example, the concatenation of
ABCBA and DE produces ABCBADE.

Formal Languages

A formal grammar is a system that produces
a language.

A language is a set of strings. For example,
{DE, DEDE, DEDEDE, …} is the language of strings
that are repetitions of DE.

The set of symbols used in a language is called
its alphabet.

Symbol is an abstract concept. In the discus-
sion that follows, symbols are represented by char-
acters.

String Rewriting Systems

A string rewriting system consists of an initial
string, called the seed, and a set of rules for specify-
ing how the symbols in a string are rewritten as
(replaced by) strings.

Here is an example string rewriting system:

seed: ABCD
rules: A ➛ BD

B ➛ B
C ➛ ACA
D ➛ Θ

The character ➛ means “is replaced by”.
The first rule specifies that A is replaced by

BD. The second rule specifies that B is replaced by
B; that is, it is unchanged. The third rule specifies
that C is replaced by ACA, while the fourth rule
specified that D is to be replaced by the empty
string; that is, deleted.

Given the seed ABCD, the first rule would
change it to BDBCD, the second rule would leave
it unchanged, the third rule would change it to
ABACAD, while the fourth rule would change it to
ABC.

As a matter of convention, if there is no rule
for a character, that character is left unchanged.
Thus, the rule B ➛ B could be omitted.

When a string rewriting system is used, the
rules are applied to the seed to produce a new
string, the rules are again applied to this string to
produce another, and so on, forming a sequence of
generations, with the seed being considered genera-
tion 0. The sequence of generations constitute the
language for the rewriting system. Note: In sets,
duplicates don’t count.

The languages of most rewriting systems of
interest are infinite, with each generation produc-
ing a new, usually longer string.

Different kinds of rewriting systems apply
rules in different ways. For example, some rewrit-
ing systems pick a rule at random to produce the
next generation. For the example rewriting system
given above, the generation might go like this:

string rule generation

ABCD 0
BDBCD 1 1
BDBCD 2 2
BBC 4 3
BBACA 3 4

2 April 6, 2002; last modified August 2, 2004

BBBDACABD 1 5
BBBACAB 4 6
BBBAACAAB 3 7

 … … …

Note that in this generation, there is a duplicate
string and some strings are shorter than their pre-
decessors.

L-Systems

Lindenmayer systems, or L-Systems for short,
are named after their inventor, Aristid
Lindenmayer. See the side bar. The distinguishing
characteristic of L-Systems is that all rules are
applied in parallel for each generation.

For the example in the last section, the genera-
tion goes like this:

string generation

ABCD 0
BDBACA 1
BBBDACABD 2
BBBBDACABDB 3
BBBBBDACABDBB 4
BBBBBBDACABDBBB 5
BBBBBBBDACABDBBBB 6
 … …

As you’d expect, Bs accumulate and each genera-
tion is longer than the previous one.

Despite their apparent simplicity, L-Systems
are very powerful. Their languages may contain
intricate patterns with infinitely varying subtlety.
Among other things, they can describe plant devel-
opment (their original use), fractals, and complex
geometric designs. See the Appendix.

The power of L-Systems comes from parallel
rewriting and repeated application (iteration) of
the rules. These properties are of fundamental
importance and apply to entirely different mecha-
nisms, such as cellular automata [1] and to many
processes in the physical world.

Example L-Systems

Example 1: The Morse-Thue sequence [6] is
produced by a very simple L-System:

seed: A

rules: A ➛ AB

B ➛ BA

The generation goes like this

Aristid Lindenmayer

A r i s t i d
Lindenmayer
was a Hungar-
ian biologist.
His invention
of the string re-
writing system
named after
him “grew out
of an attempt
to describe the
development of multicellular organisms in a
manner which takes genetic, cytological and
physiological observations into account in ad-
dition to purely morphological ones” [2].

It was a surprise to him when his system
began to be used in many other disciplines and
in many ways. In fact, he first rejected as a
gimmick the graphical interpretation of L-Sys-
tem strings to draw plants, something he never
envisioned when he started to manipulate
strings of characters. Drawing ultimately
proved to be the most influential use of L-
Systems.

There are L-Systems of many different
kinds and degrees of complexity, including
ones that can be used to represent three-di-
mensional plants in color and geometrical forms
[3-5]. Active research in the area continues to
this day.

1925 - 1985

A
AB
ABBA
ABBABAAB
ABBABAABBAABABBA

…
Note that the lengths of the strings double with
each generation.

Example 2: The Fibonacci string sequence,
analogous to the Fibonacci number sequence [7], is
produced by this L-System:

seed: A

rules: A ➛ B
B ➛ AB

Generation goes like this:

3 April 6, 2002; last modified August 2, 2004

A
B
AB
BAB
ABBAB
BABABBAB
ABBABBABABBAB
BABABBABABBABBABABBAB

…

Note that the lengths of the generations give the
Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, 21, … .

Interpreting L-System Languages

The strings produced by L-Systems such as
those given above have evident patterns but the
characters themselves have no meaning. If A and B
in the Morse-Thue example are interpreted as 0
and 1, respectively, the results is the usual interpre-
tation of the Morse-Thue sequence as a sequence of
binary digits.

Many other kinds of interpretation are pos-
sible. One of the most striking methods interprets
characters as drawing commands. The examples
in the Appendix were produced in this way. The
next article will describe the drawing interpreta-

tion.
A very natural interpretation of strings like

the Fibonacci strings is as profile sequences. Here
is a profile pattern for the seventh-generation Fi-
bonacci string:

There are many other possibilities, both in the
crafting of L-Systems for particular purposes and
in interpreting them. These will be topics of future
articles.

4 April 6, 2002; last modified August 2, 2004

References

1. Drawdown Automata, Part 1: Basic Concepts, Ralph E. Griswold, 2002:
 http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_dda1.pdf

2. “Developmental Systems and Languages in their Biological Context”, Aristid Lindenmayer in Develop-
mental Systems and Languages, G. T. Herman and G. Rozenberg, eds., North-Holland/American Elsevier,
1975.

3. The Book of L, G. Rozenberg and A. Salomaa, eds., Springer-Verlag, 1986.

4. Lindenmayer Systems, Fractals, and Plants, Przemyslaw Prusinkiewicz and James Hanan, Spring-Verlag,
1989.

5. The Algorithmic Beauty of Plants, Przemyslaw Prusinkiewicz and Aristid Lindenmayer. Springer, New
York, 1990

6. The Morse-Thue Sequence, Ralph E. Griswold, 2004:
 http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_mt.pdf

7. Drafting with Sequences, Ralph E. Griswold, 2004:
 http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_seqd.pdf

Ralph E. Griswold
Department of Computer Science

The University of Arizona
Tucson, Arizona

© 2004 Ralph E. Griswold

Ralph E. Griswold
http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_dda1.pdf

Ralph E. Griswold
http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_mt.pdf

Ralph E. Griswold
http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_seqd.pdf

5 April 6, 2002; last modified August 2, 2004

Appendix — L-System Graphics

6 April 6, 2002; last modified August 2, 2004

