
1 July 4, 2002; last revised July 31, 2004

Constrained Patterns, Part 3: Representing Constraint Sets

Neighborhood constraint sets can be rep-
resented in several ways. For human under-
standing, graphical methods work best. For
computer processing, textual representation
or numerical codes are more appropriate.

Graphical Representations

In previous articles, we showed templates
as neighborhoods laid out according to their
natural geometrical interpretation, as in

Any constraint set then can be represented
by a collection of such template images. For
example, the constraint set for plain weave is

If a constraint set is large, this kind of
representation takes a fair amount of space for
images of a size sufficient to be readily under-
stood. For example, the constraint set contain-
ing all constraints, slightly reduced to fit here,
is

A less useful but more compact graphical
representation is as a bar of 32 cells, each cell
corresponding to one of the constraints. If a
cell is in a constraint set, it is colored gray,
otherwise white. Gray is used so the black
dividing lines can be used as a guide to cell
position. For example, the cell bar for the plain-
weave constraint set is

The problem with the cell-bar representa-
tion is that the templates are coded by position,
so that to determine the constraints, it’s neces-
sary to know where individual templates are
in the bar and the order of the templates (which
is as shown in the image for all templates,
reading left to right and top to bottom. Deter-
mining the actual templates in this way is
tedious and error prone, so the cell-bar repre-
sentation is not appropriate for that purpose. It
is suitable, however, for getting an idea of the
number of constraints in a set and comparing
patterns of different constraint sets.

Textual Representations

The graphic representation as a series of
templates has a natural counterpart as a list of
5-bit binary strings in which a bit is 1 if the
corresponding cell in the neighborhood is black
and 0 otherwise.

A convention is needed to determine the
order of the bits in the bit string. The conven-
tion we’ll use here numbers the cells starting
with the center cell and continuing clockwise
around the outer cells:

5
4 1 2

3
Therefore the plain-weave constraint set has
the textual representation

01111
10000

(Since this represents a set, the order of the
constraints is not important, but a useful con-
vention is to order the binary strings by mag-
nitude, as we have done in this example.)

A more compact textual representation of
constraint sets is as 32-bit binary strings in
which a bit is one if the corresponding con-
straint is in the set and 0 otherwise. For ex-
ample, the plain-weave constraint set repre-
sented in this way is

2 July 4, 2002; last revised July 31, 2004

00000000000000011000000000000000
Note that although the cell-bar represen-

tation is difficulty for a human being to inter-
pret in its entirety, the 32-bit binary string
representation presents no problem for a pro-
gram: It’s just another decoding task of the
kind that programs have to handle all the time.

Numerical Codes

A variation on the textual representations
is to think of bit strings as base-2 integers.
These base-2 integers then can be converted to
conventional base-10 integers. For example, in
terms of 5-bit constraints, the plain-weave con-
straint set has the numerical codes

15
16

while the 32-bit representation has the nu-
merical code 98305.

For computer programs, these are just
other ways of encoding and present no more
problems than the textual forms. Base-10 inte-
gers have advantages for programming in some
situations because all commonly used pro-
gramming languages support integer arith-
metic. However, the equivalents of 32-bit bit
strings can be very large: as large as
4,294,967,296, which is beyond the range of
integer arithmetic in most programming lan-
guages.

Numerical codes are somewhere between
graphical representations, suitable for human
beings, and textual representations, suitable
for computers. For human beings, they do
have value as labels, if arbitrary, and are only
about one-third the length of the correspond-
ing binary strings, as well as being easier to
differentiate than bit strings.

References

1. Griswold, Ralph E. “Constrained Patterns, Part 1: Basic Concepts”, 2002:
 http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_con1.pdf

2. Griswold, Ralph E. “Constrained Patterns, Part 2: Neighborhood Analysis”, 2002:
 http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_con2.pdf

Ralph E. Griswold
Department of Computer Science

The University of Arizona
Tucson, Arizona

© 2002, 2004 Ralph E. Griswold

Ralph E. Griswold
http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_con1.pdf

Ralph E. Griswold
http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_con2.pdf

http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_con1.pdf
http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_con2.pdf

