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Code Drafting, Part 4: Adaptive Tables

Preceding articles in this series [1-3] pre-
sented various tables for code drafting. Any of
these tables can be used for a given string.
Granted, if the result is unsatisfactory, another
table can be tried, but the tables are fixed.

A different approach is to construct a code
table tailored to a given string. Such a code
table need only have the characters that occur
in the string, and these characters can be dis-
tributed in a balanced manner over the shaft
pairs based on the number of times they occur
in the string, rather than according to frequen-
cies found in large bodies of text.

Here is an example, take from Edgar Allan
Poe’s poem Annabel Lee:

we loved with a love that was
  more than love

The characters that occur in this string,
arranged in order of decreasing occurrence,
are:

      character         count

9 (blanks)
e 5
a 4
o 4
t 4
h 3
l 3
v 3
w 3
d 1
i 1
m 1
n 1
r 1
s 1

Constructing the code table starts by as-
signing the character with the most occur-
rences to the first shaft pair, the character with
the next most occurrences to the next shaft
pair, and so on.

Assigning the first four characters pro-
duces

    characters        shaft pairs      count

1,2 9
e 2,3 5
a 3,4 4
o 4,1 4

The process continues with the remaining
characters. Since the count for t is 4, it cannot be
added to shaft set (1,2), since that would pro-
duce too large a count for that shaft set. In-
stead, t is added to the next available shaft set,
and the process continues.

1,2 9
et 2,3 9
ah 3,4 7
ol 4,1 7

The next character is v with a count of 3, so
it cannot be added to shaft sets (1,2) or (2,3), but
instead is added to shaft set (3,4). Similarly, w
is added to shaft set (4,1).

1,2 9
et 2,3 9
ahv 3,4 10
olw 4,1 10

The next character is d with a count of 1, so
it can be added to shaft pair (1,2), and so on:

 d 1,2 10
eti 2,3 10
ahvm 3,4 11
olwn 4,1 11

The last two characters are added to the
first two shaft pairs, completing the table:

dr 1,2 11
etis 2,3 11
ahvm 3,4 11
olwn 4,1 11
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Since the number of characters in the string
used here is evenly divisible by 4, the counts
come out even and the table is perfectly bal-
anced. A pattern for this string derived from
this code table appears at the end of this article.

On the other hand, the technique of pro-
ducing balanced code tables based on the fre-
quency of occurrence of characters in large
bodies of text produces this table, which is not
as well balanced:

      characters        shaft pairs      frequency

d 1,2 0.227
aei 2,3 0.227
hlmnrs 3,4 0.227
otvw 4,1 0.318

If the number of characters in a string is
not evenly divisible by 4, the resulting code
table cannot be perfectly balanced, but the
process described above assures that it will be
as nearly balanced as possible.
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Annabel Lee


