
1 March 6, 2004; last revised August 1, 2004

Code Drafting, Part 4: Adaptive Tables

Preceding articles in this series [1-3] pre-
sented various tables for code drafting. Any of
these tables can be used for a given string.
Granted, if the result is unsatisfactory, another
table can be tried, but the tables are fixed.

A different approach is to construct a code
table tailored to a given string. Such a code
table need only have the characters that occur
in the string, and these characters can be dis-
tributed in a balanced manner over the shaft
pairs based on the number of times they occur
in the string, rather than according to frequen-
cies found in large bodies of text.

Here is an example, take from Edgar Allan
Poe’s poem Annabel Lee:

we loved with a love that was
  more than love

The characters that occur in this string,
arranged in order of decreasing occurrence,
are:

      character         count

9 (blanks)
e 5
a 4
o 4
t 4
h 3
l 3
v 3
w 3
d 1
i 1
m 1
n 1
r 1
s 1

Constructing the code table starts by as-
signing the character with the most occur-
rences to the first shaft pair, the character with
the next most occurrences to the next shaft
pair, and so on.

Assigning the first four characters pro-
duces

    characters        shaft pairs      count

1,2 9
e 2,3 5
a 3,4 4
o 4,1 4

The process continues with the remaining
characters. Since the count for t is 4, it cannot be
added to shaft set (1,2), since that would pro-
duce too large a count for that shaft set. In-
stead, t is added to the next available shaft set,
and the process continues.

1,2 9
et 2,3 9
ah 3,4 7
ol 4,1 7

The next character is v with a count of 3, so
it cannot be added to shaft sets (1,2) or (2,3), but
instead is added to shaft set (3,4). Similarly, w
is added to shaft set (4,1).

1,2 9
et 2,3 9
ahv 3,4 10
olw 4,1 10

The next character is d with a count of 1, so
it can be added to shaft pair (1,2), and so on:

 d 1,2 10
eti 2,3 10
ahvm 3,4 11
olwn 4,1 11

The last two characters are added to the
first two shaft pairs, completing the table:

dr 1,2 11
etis 2,3 11
ahvm 3,4 11
olwn 4,1 11



2 March 6, 2004; last revised August 1, 2004

Since the number of characters in the string
used here is evenly divisible by 4, the counts
come out even and the table is perfectly bal-
anced. A pattern for this string derived from
this code table appears at the end of this article.

On the other hand, the technique of pro-
ducing balanced code tables based on the fre-
quency of occurrence of characters in large
bodies of text produces this table, which is not
as well balanced:

      characters        shaft pairs      frequency

d 1,2 0.227
aei 2,3 0.227
hlmnrs 3,4 0.227
otvw 4,1 0.318

If the number of characters in a string is
not evenly divisible by 4, the resulting code
table cannot be perfectly balanced, but the
process described above assures that it will be
as nearly balanced as possible.

References

1. Code Drafting, Part 1: Introduction, Ralph E. Griswold, 2004:
  http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_cd1.pdf

2. Code Drafting, Part 2: Balanced Code Tables, Ralph E. Griswold, 2004:
   http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_cd2.pdf

3. Code Drafting, Part 3: A Larger Character Set, Ralph E. Griswold, 2004:
   http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_cd3.pdf

Ralph E. Griswold
Department of Computer Science

The University of Arizona
Tucson, Arizona

© 2004 Ralph E. Griswold

Ralph E. Griswold
http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_cd1.pdf

Ralph E. Griswold
http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_cd2.pdf

Ralph E. Griswold
http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_cd3.pdf

http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_cd1.pdf
http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_cd2.pdf
http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_cd3.pdf


3 March 6, 2004; last revised August 1, 2004

Annabel Lee


