
Refining the Infrastructure of
τXSchema

Honor’s Thesis

Alex Henniges
Department of Computer Science

University of Arizona
Supervisor: Dr. Richard Snodgrass

April 30, 2010

Abstract

With the ever-growing use of XML and the demand for storing
time-varying documents, τXSchema is one such method for provid-
ing a unified system for temporal documents. This paper studies the
current implementation of τXSchema in Java and recommends a new
design that reduces redundant code found in the tools by improving
upon the infrastructure, resulting in less code that is easier to under-
stand and has the potential to run more efficiently.

Contents

1 Introduction 3

2 Overview 5
2.1 XML . 5
2.2 New Language Design . 6
2.3 Old Language Design . 7
2.4 Representation Types . 8
2.5 Tools . 9

3 Former Design 11

4 New Design 14
4.1 Temporal Map . 14
4.2 Document Classes . 14
4.3 Interface Classes . 17

5 Evaluation 20

6 Conclusion & Future Work 21

List of Figures

1 Two slices of a simple XML document [2]. 8
2 The four representation types [2]. 9
3 The UML diagram for the former design. 12
4 The UML diagram for the new design. 15
5 A sequence diagram of a document being squashed. 19

1 INTRODUCTION 3

1 Introduction

Extensible Markup Language (XML) is a format for describing data within
documents. The use of XML has risen considerably in recent years, due in
part to the language’s flexibility in describing a wide range of data. In ad-
dition, XML’s format can be easily read (it closely mimics HTML) and is
intuitive. That is, data is represented in an object-oriented design where
elements are stored in a hierarchical fashion (see Section 2.1). In addition to
storing data, XML can describe how the data should be stored, such as how
two elements are related, in a schema. W3C defines the most widely used
schema language for XML, termed XMLSchema.

However, there are no standardized tools in XML to store the changes that
may occur in a set of data. Such information, called temporal data, comes in
many forms and is useful in many scenarios. For example, a company may
have data on the current address of an employee, but might also want to
know the previous addresses of the employee. If this type of data is accessi-
ble, then questions can be asked of the data: e.g. how many times has the
employee moved in the last two years? For any set of data, this extra informa-
tion can easily be added into the XML’s schema. A more difficult problem is
developing a schema that records changes in data for all possible sets of data.

In [1], a solution to this problem is suggested by way of an extension to
the W3C schema language, known as τXSchema. The paper recommends
that a set of standard XML documents representing the time-varying data
is stored in a single additional, temporal document. Moreover, the schema
or schemas that describe the instances of the data is collected in another
document called the temporal schema. The temporal document and tem-
poral schema are both described by a standard XMLSchema schema, thus
providing an upward-compatible extension for time-varying documents. As
part of this system, several tools are provided: squash, schema mapper, and
τValidator, which allow the user to describe how the temporal data is pre-
sented and organized.

An initial version of most of these tools and the underlying system was im-
plemented in Java. However, the design of this first version had several flaws
that made it difficult to complete the implementation of τXSchema. These
flaws include a previous terminology for τXSchema and a corresponding doc-

1 INTRODUCTION 4

ument set that proved to be cumbersome. This paper will discuss those flaws
and then explain in detail the new language and the features of the resulting
design. In summary, this paper will show how identifying the commonality
found within the tools that support τXSchema and moving this functional-
ity into the infrastructure (that is, the shared classes) enables the tools to
require less code, to be more easily understood, and to run more efficiently.

2 OVERVIEW 5

2 Overview

At the start of this project, the goal was to complete the implementation
of the temporal validator, as described in [1]. Other important tools, such
as squash and schema mapper, were already implemented (see Section 2.5).
Also, the functionality that represented temporal elements, known as items,
was already written in Java.

The early part of the project involved learning XML, reading about τXSchema
through a 260-page technical report [1], providing editing comments for this
report, working on the τXSchema website, and performing some small, initial
changes to the τXSchema system of nearly 10, 000 lines of code, as well as
the appropriate test cases for those changes. However, the design of the tools
proved to be cumbersome and a large barrier to entry for any new hands on
the project. The goal then changed to re-building the implementation of the
concepts presented elsewhere [1].

The rest of this section provides helpful background to the τXSchema system.

2.1 XML

XML is a format for encoding documents, very similar to HTML. Tags are
used to indicate the beginning and end of objects. These objects are ei-
ther elements, which are entities that hold all sorts of data and even other
elements, or attributes, which are the data. A small example of an XML
file is given in listing 1. Each XML file has a root element, in our example
person, that also contains some preamble-type information, including the
schema that validates it. In the example, the person element has two child
elements, fname and age. In addition, the fname element has an attribute
for a prefix to the name.

Listing 1: An example XML file
1 <?xml ve r s i on="1.0" encoding="UTF -8"?>
2 <person xmlns : x s i="http ://www.w3.org /2001/ XMLSchema -instance"

3 x s i : noNamespaceSchemaLocation="./ PersonSchema.xsd">
4 <fname p r e f i x="Mr.">Steve</fname>
5 <age>24</age>
6 </person>

2 OVERVIEW 6

In order to maintain the consistency and correctness of XML files, schemas
are used to describe how the documents ought to be structured. A document
like our example in Listing 1 can be described by its corresponding schema,
shown in Listing 2. This document can appear complicated, but one of the
things that it states is that any person element is required to have one and
only one fname and age. If an XML document with the person element were
to not have one of these items, then it would not be validated as consistent
with this schema.

Listing 2: The Person schema
1 <?xml ve r s i on="1.0" encoding="UTF -8"?>
2 <xsd : schema xmlns : xsd="http ://www.w3.org /2001/ XMLSchema"

3 elementFormDefault="qualified"

4 attr ibuteFormDefau l t="unqualified">
5
6 <xsd : element name="person">
7 <xsd :complexType mixed="true">
8 <xsd : sequence>
9 <xsd : element r e f="fname" minOccurs="1"

10 maxOccurs="1" />
11 <xsd : element name="age" type="xsd:integer"

12 minOccurs="1" maxOccurs="1" />
13 </xsd : sequence>
14 </xsd :complexType>
15 </xsd : element>
16
17 <xsd : element name="fname">
18 <xsd :complexType mixed="true">
19 <xsd : attribute name="prefix" type="xsd:string" />
20 </xsd :complexType>
21 </xsd : element>
22 </xsd : schema>

2.2 New Language Design

To represent temporal data, it was proposed that a system of three documents
be used: the temporal document, the temporal schema, and the annotation
document [1]. The temporal document represents an instance of temporal
data. It is the analog of a standard XML document. In fact, a temporal doc-
ument references the conventional documents, called slices, that are changing
over time. A temporal document can be written in several forms (see Section
2.4). A temporal document also refers to a temporal schema.

The temporal schema is the analog of a standard XML schema. Like the
temporal document, the temporal schema refers to a sequence of conven-

2 OVERVIEW 7

tional schemas that are changing over time. Each conventional schema should
match the conventional documents valid at times the schema is valid. It is
important to note that the temporal schema is not the literal schema for the
temporal document, but is used when creating such a schema and for tem-
poral validation. A temporal schema also references one or more annotation
documents.

The annotation document has no analog to a standard W3C notion. This
document is used to describe how the temporal data should be structured and
to define temporal constraints. This document is separated into two parts:
physical and logical. Physical annotations state which elements of a conven-
tional document can change. This information is important when structuring
the temporal data, especially when squashing the temporal document (see
Section 2.5). The logical annotations define how the data can change, such
as once an element appears it can not disappear later. An annotation doc-
ument may also change over time, perhaps when the schema changes, so a
temporal schema can reference more than one annotation document.

2.3 Old Language Design

The first design of τXSchema used a different language and set of documents
than of those used in the latest definition [1]. Developing a new language
was done before considering a redesign of the code, but the change was non-
trivial and integral to the proposed new design. We present a brief overview
here to help emphasize the improvements in the new design.

The original language of τXSchema recommended the use of a bundle of doc-
uments with a chain of containments. The highest level document was the
Config document. This document provided the path and times of validity of
the slices as well as a reference to a TemporalBundle. The TemporalBundle

document maintained all the other documents, including the schemas for
each slice and the physical and logical annotations, which were separate doc-
uments.

The new language combines the annotations into one document and reor-
ganizes the config and bundle documents into the temporal document and
temporal schema. The former change is sensible as it decreases the number

2 OVERVIEW 8

of required documents while still making a logical merge. The latter change
helps to improve τXSchema as an extension of XML and XMLSchema. The
names of the new documents also better describe their functions.

2.4 Representation Types

A temporal document can be represented in several ways (a more in-depth
analysis of each representation is given in Thomas’ paper [2]).

SliceSequence This can be thought of as the basic representation of a tem-
poral document, indicating for each slice only the filename and period
for which that document is active.

ItemBased In this representation, the temporal document appears most
like a standard XML document. Each time-varying element, now an
item, contains its multiple instances.

EditBased A temporal document that is in this form records the differences
from one version of a document to the next. This is a compact form
and can be easy to generate, but can take time to re-interpret to the
more understandable ItemBased representation.

SliceBased This representation shows the contents of every slice of the tem-
poral document. It is the most comprehensive but naturally the largest
representation as well.

Figure 1 shows two slices of a document and Figure 2 shows the resulting
representation, in each of the four types.

<!−− 2008−01−01 −−>
<person>

<fname>Steve</fname>
<age>24</age>

</person>

(a) Slice1

<!−− 2008−03−17 −−>
<person>

<fname>Steve</fname>
<age>25</age>

</person>

(b) Slice2

Figure 1: Two slices of a simple XML document [2].

2 OVERVIEW 9

<tv root>
<person>

<fname>Steve</fname>
<age Item>

<age Version begin="2008 -01 -01">
<age>24</age>

</age Version>

<age Version begin="2008 -03 -17">
<age>25</age>

</age Version>
</age Item>

</person>
</tv root>

(a) Item

<tv root>

. . .

<sliceSequence>
<s l i ce l o c a t i o n="./ slice1.xml"

begin="2008 -01 -01" end="

2008 -03 -17" />
<s l i ce l o c a t i o n="./ slice2.xml"

begin="2008 -03 -17" />
</sliceSequence>

. . .
</tv root>

(b) SliceSequence

<tv root>
<timestamp begin="2008 -01 -01">

<person>
<fname>Steve</fname>
<age>24</age>

</person>
</timestamp>
<timestamp begin="2008 -03 -17">

<person>
<fname>Steve</fname>
<age>25</age>

</person>
</timestamp>

</tv root>

(c) Slice

<tv root>
<timestamp begin="2008 -03 -17">

<person>
<fname>Steve</fname>
<age>25</age>

</person>
</timestamp>

<timestamp begin="2008 -01 -11" >
<change l i n e s="3">

&l t ; age> ;24& l t ; / age> ;
</change>

</timestamp>
</tv root>

(d) Edit

Figure 2: The four representation types [2].

2.5 Tools

The operations that we would like to perform on temporal documents can
be categorized into three tools:

Squash/ReSquash. Squashing a temporal document refers to taking mul-
tiple slices and ‘squashing’ them into one document. When we want to con-
vert from one representation type to another, we refer to it as resquashing (or
possibly unsquashing) the document. Often, a certain representation is more
effective for one application than another in both time and the complexity of
the implementation. The standard concept of squash is therefore converting
from SliceSequence to ItemBased.

2 OVERVIEW 10

SchemaMapper. When a temporal document is being squashed, there is
a check that the documents are valid. The tool SchemaMapper will cre-
ate a standard schema document, known as the representational schema, to
validate against the squashed document. SchemaMapper uses the temporal
schema and annotation document to create the representational schema.

TemporalValidator. When storing temporal data, there are some con-
straints we may like to have that can not be implemented using XML’s stan-
dard validation tools, even using squashed documents and a representational
schema. For example, one may want to enforce the rule that an employee’s
email address can not change more than once per year. The TemporalVal-
idator extends XML’s validator to include temporal constraints. The Tem-
poralValidator first creates a representational schema using SchemaMapper
and performs a standard XML validation on the temporal document. It then
checks for any temporal constraints, which can be found in the annotation
document.

3 FORMER DESIGN 11

3 Former Design

The Unified Modeling Language (UML) diagram in Figure 3 at the end of
this section shows the structure of the code at the beginning of this project.
The UML shows the classes in τXSchema and their dependencies to one an-
other. The classes at the bottom of Figure 3, such as Item and BaseItem,
as well as Primitive represent the fundamental classes of the system that
maintain the temporal data.

There are 17 classes or interfaces in total that are used for the tools. The
procedure to use the tool Squash, for example, would be to start with the
main function found in Squash, which then goes to the representation factory
to create a DoSquashing object to perform the actual squash function. The
rest of the functionality is found in DoSquashing, such as parsing the tempo-
ral document and temporal schema and creating the output document. As
a result, despite breaking the tool into multiple classes, 596 lines of code can
be found in the DoSquashing class.

Furthermore, the class DoSVSquashing, which performs a squash in cases
where the schema changes over time, is distinguished from the standard
squash. In the same vein, the functionality to reverse a squash is treated
as a completely different tool. Because all of the tools are composed as such,
each tool must parse the temporal documents and schema on its own and
instantiate similar variables. An example would be that both Squash and
SchemaMapper must parse the temporal document to access the annota-
tion document in order to build the LogicalAnnotationValidator (LAV)
and PhysicalAnnotationValidator (PAV). The parsing procedure requires
about 50 lines of code and is somewhat complex. Because this code was
featured in both classes, when the document structure was changed from
bundles the same code had to be modified in both places. These types of
changes have the potential to introduce consistency errors.

The commonality of the tools suggests that there should be a way to add
to the infrastructure so that all of the tools access the same classes. At
the same time, the large number of classes dedicated to the tools should
be merged to help identify more similarities in the code. For example, the
multiple representations of Squash can be grouped in a more efficient way.
This would also decrease confusion and make it more clear how a tool arrives

3 FORMER DESIGN 12

Figure 3: The UML diagram for the former design.

3 FORMER DESIGN 13

at its output. The rest of this thesis discusses an improvement to the design
and concludes with an evaluation of the new design.

4 NEW DESIGN 14

4 New Design

The UML diagram for the new design is Figure 4. Our original new design
went through more than six iterations and multiple conference calls. Discus-
sions focused on building a larger infrastructure to decrease the size of the
tools, to improve options for the input and output of data, and to ensure
that the new design could make use of older code. In addition, early imple-
mentation was done to test the feasibility of the new structure. We now walk
through the individual parts of that design.

4.1 Temporal Map

Definition. A temporal map is a collection of objects indexed by time
periods with the following properties:

1. Insertion: When inserting an object into the temporal map, if the time
period intersects the period of an existing object, the periods should be
decomposed into disjoint intervals, and the newly inserted object should
replace the old object over the time period given.

2. Retrieval: An object can be retrieved from the map by providing a time
instance or a period. If a period is given that is not a subset of a period
in the index, null is returned. That is, the provided period cannot
intersect two periods of the map.

Defining and using a temporal map aids in the storage of temporal data for
the τXSchema system. By making use of generics as introduced in Java
1.5, we can use temporal maps to hold many different kinds of objects, such
as the conventional schemas in the temporal schema. Because we are often
interested in an instance of time, such as the state of a document on a specific
date, the temporal map allows for retrieval of the document without requiring
knowledge of the entire period during which the document is constant.

4.2 Document Classes

In the DOM implementation of XML in Java, there is a document object that
contains the root node of the specific XML document and other information.
We would like to add additional information so that it becomes a temporal

4 NEW DESIGN 15

Figure 4: The UML diagram for the new design.

4 NEW DESIGN 16

document. W3C only provides interfaces withing their package, so one op-
tion would be to implement the provided Document interface. However, we
would have to re-implement many methods that do not need to be changed
and this would also be a complicated procedure. Another option would be
to maintain a document object within the class for a temporal document.
This was considered in early implementations, but ultimately deemed un-
necessary. Instead, we proceed by introducing three new classes.

TemporalDocument. This is the object we want to represent a temporal
XML document. We first simplify the situation by considering periods where
the schema for this document remains constant, known as schema constant
periods (SCP). An element of a document that changes over time is an item.
The previous design implemented the Item class in Java, and we now use it
here for our TemporalDocument.

A TemporalDocument thus contains a TemporalMap of slice documents, which
we call ConstantSchemaTemporalDocuments (CSTD) that are indexed by
the SCPs. Each CSTD has a root Item which may have Item children. In
this way, our TemporalDocument mirrors that of DOM’s document object.
Furthermore, a CSTD has information on the schema and annotations that
describe it. We can also merge two CSTDs with adjacent periods using
the Item’s merge function. Lastly, the TemporalDocument also references a
TemporalSchema object.

TemporalSchema. Given the usefulness of the TemporalDocument object,
it makes sense to also have an object to store information about temporal
schemas. The TemporalSchema object has a TemporalMap of annotation doc-
uments. We also want to allow a temporal schema to imports other schemas
just as a standard schema would. A complication arises if one of these im-
ported schemas is itself temporal. We propose the following solution.

A TemporalSchema begins with a list of its imported schemas, all of which
are assumed to be temporal. This recursively creates a tree of imported
TemporalSchemas. The root TemporalSchema then calls the member func-
tion normalize() on itself. This function performs a post-order traversal of
the tree, calling normalize on each child TemporalSchema. When called on
a leaf, the leaf becomes a ConventionalSchema and passes its SCPs to the
parent. The parent integrates the SCPs of its children to form one timeline

4 NEW DESIGN 17

of SCPs. The parent then in turn passes this timeline to its parent and be-
comes a ConventionalSchema. At the end of this procedure, only the root
should be temporal, and this TemporalSchema should have a TemporalMap

of ConventionalSchemas.

The TemporalSchema provides information (via AnnotationDocuments) to
the TemporalDocument when a document is being validated. Part of this
process involves creating the representational schema, so naturally this func-
tionality is provided here.

AnnotationDocument. Representing the annotation document is the sim-
plest of the three. An AnnotationDocument contains DOM elements of the
logical and physical annotations. Validation of a temporal document uses
the logical annotations to check for temporal constraints and physical anno-
tations to determine that only the correct elements are changing over time.
The functionality for using these annotations to insert timestamps and create
the appropriate items is moved from the two classes LAV and PAV and into
this class.

All three document classes allow for more efficient code then the previous
design. Before, each tool had its own set of the above objects. In the new
design, we separate the annotation from the validator, placing both logi-
cal and physical annotations in the AnnotationDocument, and implementing
validation within the TemporalDocument through the validate function.
Furthermore, a tool now only needs to maintain the TemporalDocument and
access to the other documents is simple.

Use of the document classes can also save computation time from repetitive
traversals of the DOM document object that can occur from using several
tools. Now, the time to construct a TemporalDocument needs to happen just
once and it can then be passed from tool to tool.

4.3 Interface Classes

With this new design, we have moved the maintenance of documents out of
the tools. The last commonality that can be found amongst the tools in-
volves the input and output of τXML documents. Each tool is written with

4 NEW DESIGN 18

code to read and parse these documents as well as code to format and write
documents. In our redesign, we move this functionality into a new set of I/O
classes.

We first acknowledge another option for reading XML documents in Java,
that of SAX. SAX reads documents fundamentally different from DOM,
and thus we would like to make this option available in our implementa-
tion. We thus have at the most abstract level the class TimeVaryingIO

with the abstract function to create a TemporalDocument given a temporal
document file. This function is implemented in both TimeVaryingDOM and
TimeVaryingSAX. From this point forward we focus on DOM and assume
that a SAX implementation would be similar.

When TimeVaryingDOM is given a temporal document, it checks the repre-
sentation type through an attribute, then for every schema constant period,
passes the root element to the appropriate representation class, which will
create a CSTD. Lastly, TimeVaryingDOM will combine the CSTDs to form
a TemporalDocument object. To perform the opposite function, that is, to
take a TemporalDocument object and output it to a file, one calls the func-
tion output to the desired representation class.

A tool such as squash now becomes much easier to implement. An ex-
ample of the sequence of function calls to perform a squash is given in
Figure 5. In words, squash would give the temporal document, likely in
SliceSequence form, to TimeVaryingDOM to create a TemporalDocument

and then ask ItemBasedDOM to output the TemporalDocument in the Item-
Based representation. ReSquash would be the same only where the input is
in some other representation. The code that was originally in the squash tool
is thus moved to a more intuitive location and in a way that all other tools
can also access the same functionality without having to replicate code.

4 NEW DESIGN 19

Figure 5: A sequence diagram of a document being squashed.

5 EVALUATION 20

5 Evaluation

The changes to the language and document structure was completed and
tested with the τXSchema system. The changes in the documents allowed
for a more intuitive language, for example, a temporal document maintains
the conventional documents and a temporal schema maintains the conven-
tional schemas. Additionally, those changes influenced the direction of the
new design. Furthermore, the previously working test cases for τXSchema
were translated to the new style and were found to work as before.

The entire implementation of this design was not completed by the end of the
project. Initial versions of the TemporalMap and document classes were cre-
ated, but the I/O classes have not been implemented. That said, a number of
advantages are readily clear from these changes. For one, there are only three
classes, ReSquash, SchemaMapper, and TemporalValidator now dedicated
solely to the tools compared to 17 (DecomposedRepresentationFactory,
Squash, DoSquashing, DoSVSquashing for just one form of Squash) in the
old design. Furthermore, the lines of code in one these classes is much less
than their former counterparts. For example, in the sequence diagram given
in Figure 5, only several lines of the procedure would actually be written
within the Squash class (just the first and last function calls).

A third advantage is that the parsing of a temporal document is only per-
formed once. Currently, a tool runs τXSchema once then the program ends.
However, future use could involve situations where multiple tools are used
within one session. Therefore, after the above Squash is performed, one can
squash the document into other representation types or perform other tools
like validation in reduced time. This is one example as to how this design
is better than the old system at handling unknown, future situations. As
another example, suppose it is determined that a tool that takes as input
several temporal documents is needed. For this to be implemented in the
old design, all of the data and variables for both documents would have to
be maintained within the tool. Instead, the tool can simply carry the two
TemporalDocument objects which contain their respective data, and more-
over, that data is easily accessed. This aspect becomes more valuable if
the tool were to, say, take as input a variable number, perhaps an array, of
temporal documents. A direct corollary is that the proposed design is more
accessible to new programmers working with the τXSchema system.

6 CONCLUSION & FUTURE WORK 21

6 Conclusion & Future Work

The goal of this project was to improve the design of the τXSchema archi-
tecture, in particular the design of the tools, so that the code is more under-
standable as it is passed from one programmer to the next and that the code
is more robust so that current and future additions to the the system are
easier. The design described in this paper, though never fully implemented,
includes many improvements to the previous design. The temporal docu-
ment classes mimic and extend those of the document object model, much
in the same way that τXSchema is designed to extend XMLSchema. Thus,
we have now shown through this reorganization that the commonality within
the tools can be moved into the infrastructure and that the end result is a
cleaner project that is easier to understand and has the potential to run more
efficiently.

The implementation of this design should aid in the completion of the tools
such as the TemporalValidator, as was the original goal for this project. This
design should ultimately make τXSchema a good choice for maintaining tem-
poral data. As XML continues to be used in a wide variety of situations,
τXSchema will provide a general way to maintaing time-varying data that
extends XMLSchema in an intuitive way.

There are several aspects to the project that are worth spending more time
on.

� A more robust implementation of the new design is still needed. This
would then be followed by thorough comparisons to the old design, such
as number of lines of code, number of classes, and speed of the tools.

� Developing the concept of a TemporalMap further and improving the
efficiency of the implementation. For example, it may be better that a
retrieval returns a list of objects when a given period interests several
keys to the map.

� Explore all of the cases involved in the normalize function of TemporalSchema
and nested schema versioning.

� Develop SAX versions of the input and output classes.

References

[1] Faiz Currim, Sabah Currim, Curtis Dyreson, Shailesh Joshi, Richard T.
Snodgrass, Stephen W. Thomas, and Eric Roeder. τXSchema: Support
for Data- and Schema-Versioned XML Documents. Technical report, De-
partment of Computer Science, University of Arizona, 2009.

[2] Stephen W. Thomas. Implementation and Evaluation of Temporal Rep-
resentations in XML. Master’s thesis, Department of Computer Science,
University of Arizona, 2009.

	Introduction
	Overview
	XML
	New Language Design
	Old Language Design
	Representation Types
	Tools

	Former Design
	New Design
	Temporal Map
	Document Classes
	Interface Classes

	Evaluation
	Conclusion & Future Work

