
HAWK: A Tool for Testing AMELIE

Honors Thesis

Ryan Marcus

May 26, 2014

ii

Abstract

HAWK and SHAWK are a software package that enables an AMELIE
developer to test a subset AMELIE’s of abilities, specifically AMELIE’s
ability to run experiments on a stated subset of possible experimen-
tal domains.

iii

iv

Acknowledgments

This thesis represents the work of many individuals. I would like to
thank Dr. Richard Snodgrass and Dr. Clayton Morrison for providing
excellent mentoring and advice throughout the thesis process. David
Sidi’s initial work on the conceptualization of the validation domain,
along with his understanding of TETRAD, proved invaluable. Qim-
ing Shao was instrumental in developing the early AMELIE pro-
totype shown in this thesis, and has generally been exceptionally
tolerant of many late-night emails and rushed deadlines.

I would also like to thank the University of Arizona Honors Col-
lege for their role in giving me this opportunity, despite the generally
antagonistic relationship previously present.

v

vi

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Related Works . 1
1.3 AMELIE . 1

1.3.1 Overview . 2
1.3.2 Experimental Domains . 3

1.4 S/HAWK’s Validation Strategy 4

2 HAWK DSL 5
2.1 Definition and Structure . 5

2.1.1 Bayesian Networks . 5
2.1.2 Linear models . 7
2.1.3 Subject Class Trees . 7

2.2 Implementing an extensible DSL 8
2.2.1 Lexing and Parsing . 8
2.2.2 Static Analysis . 8
2.2.3 IR Generation . 10
2.2.4 Storage . 10
2.2.5 Execution . 10

3 Designing HAWK: GUI or DSL? 11
3.1 Accommodating Future Versions of TETRAD 11

3.1.1 JUnit Testing . 11
3.1.2 Reflection-based Approaches 12
3.1.3 Limitations . 12

3.2 Extensibility . 12

4 SHAWK 15
4.1 Purpose and Function . 15
4.2 Implementation . 15

5 Case Study: DBMS Metrology 17
5.1 Introduction . 17
5.2 Methodology . 17
5.3 Constructing the HAWK Model 18
5.4 Using SHAWK . 18
5.5 Using AMELIE to Construct a Model 18
5.6 Testing Hypothesis . 19

vii

viii CONTENTS

5.7 Model Comparison . 20
5.8 Results . 22

6 Conclusion 23
6.1 Results . 23
6.2 Future Work . 23

A Code and Data Listings 25
A.1 HAWK DSL ANTLR4 Grammar 25
A.2 HAWK DSL Example: Linear Model 26
A.3 HAWK DSL Example: Bayes Model 27
A.4 Metrology Data . 29

Chapter 1

Introduction

HAWK and SHAWK are a software package that enables an AMELIE developer
to test a subset AMELIE’s of abilities, specifically AMELIE’s ability to run
experiments on a stated subset of possible experimental domains.

1.1 Motivation

The AMELIE project [13] seeks to provide tools to aid scientists during the
scientific process. AMELIE seeks to aid in model creation, hypothesis genera-
tion, experiment proposal, data verification, and model validation. Eventually,
AMELIE seeks to automate the entire process of casual inference.

Since the real-world is often complex, developing AMELIE using only real-
world problem domains would introduce far too much complexity in the early
phases of development. To alleviate this problem, HAWK (Heuristic Artificial
World Kreator) provides an AMELIE developer with the capacity to define
“worlds” which represent a simplified and well-defined version of some real-
world phenomena, or an entirely artificial one.

Thus, HAWK and SHAWK (Scientist HAWK) enable an AMELIE developer
to test AMELIE’s abilities to execute experiments on a stated subset of possible
experimental domains.

1.2 Related Works

While there are a few projects with goals similar to AMELIE [9], these tools
lack (or do not discuss) any sort of testing framework. Many of these projects
likely utilize unit testing and other quality assurance tools, none of them present
a tool for the creation of artificial models that can be accessed using the same
methods as one would access “real” data.

1.3 AMELIE

Since HAWK is a testing tool for AMELIE, it is appropriate to give a brief
overview of AMELIE’s structure.

1

2 CHAPTER 1. INTRODUCTION

1.3.1 Overview

An unpublished paper by Snodgrass et al. describes the structure of AMELIE
as follows:

Figure 1.1 is a schematic of the functional components of AMELIE.
At the center is the Cyber Workspace that provides computational
support of the SCM modeling language. The stretched ovals de-
note data structures. These include SCMs, the hypotheses gener-
ated from them, explicit representation of explanatory goals, and
experiment workflows that can be executed in the environment of a
study domain.

All of the instances represented by these data structures will even-
tually be stored and maintained in a database, depicted on the far
left of the workspace. The database will also stores any data result-
ing from experiment outcomes, as well as results of exploratory data
analysis and other data manipulations. The database will include
provenance metadata describing how data or SCM structures have
been generated and tested.

The five vertical grey columns represent the thematic roles of the
workspace data structures and the processes that operate on them
at particular stages of the empirical investigation cycle. In the Model
column, SCMs are the focus of activity; here, SCMs are constructed
and their structure and parameters revised. The Hypothesis column
involves the representation, generation, selection and testing of hy-
potheses expressed in SCMs. The Design column is the locus of
experiment design and planning. Throughout this presentation, we
use the term “experiment” to refer to a plan to analyze existing data
or a specification of one or more interventions that affect aspects of
the environment.

The experiment design process produces a workflow that can be
executed in the study domain environment and also specifies the
plan to analyze the results of the experiment outcome, including
reliability analysis, hypothesis testing, and updating the model.

The Experiment column represents the details of running the ac-
tual experiment in the study domain environment. These could be
observational or interventional experiments.

The study domain environment provides an interface to databases
storing already available data, may include access to external data
sources (far right of Figure 1.1), and may also provide an interface
to an experiment apparatus that can perform interventions on the
study subject, generating new observations.

Finally, the Lifecycle column on the far left of Figure 1.1 represents
the overall management of AMELIE’s processing throughout the
empirical investigation cycle.

1.3. AMELIE 3

Workflow
Execution

Experiment
Outcome

Data

Model Entry and
Exploratory Data

Analysis
Hypothesis
Exploration

Experiment
Workflow Design

Experiment
Management

Model Hypothesis Design Experiment

Us
er

 In
te

rfa
ce

Cy
be

r W
or

ks
pa

ce
(R

ep
re

se
nt

at
io

n)

Al
go

rit
hm

s
fo

r G
en

er
at

io
n

Al
go

rit
hm

s
fo

r A
na

ly
si

s

Hierarchical Task
Network

MILL
Managing

the Investigation
LifecycLe

Lifecycle

SCM
Specification

Prime with Manually
Specified Model

Experiment
Workflow

Domain
Experiment

Environment

Lifecycle Monitor
and Management

Interface

Prime with
External Data

Experiment
Data:

Measured
and Derived

Candidate
Causal Models Hypotheses and

Explanatory Goals Experiment
Workflows

Experiment Design,
Planning and
Scheduling

Model Construction Hypothesis
Generation

Model Evaluation Hypothesis Testing Reliability Analysis
VALIDATION

ACADEMIC

AZDBLAB

STN

Domain Specifications:

External
Data

Sources

Domain
Experiment

Environment

Study
Domain

Experiment
Environments

Figure 1.1: AMELIE Overview

1.3.2 Experimental Domains

Before exploring the specifics of HAWK, it is helpful to understand the current
semantics of an experimental domain within AMELIE. An experimental domain
is a set of experiments, each identified by a name. For example, the “quantum
physics domain” might contain experiments called “the gold foil experiment”
and “the prism experiment”. Each experiment defines a set of independent
variables (variables on which an intervention may be performed) and a set of
dependent variables (variables that may only be observed).

Additionally, each experiment defines a subject class tree representing vari-
ous pools of non-overlapping subjects. For example, the “the prism experiment”
might have a subject class tree like this:

• Prisms

– Glass prisms

∗ Low quality

∗ High quality

– Plastic prisms

AMELIE assumes that all experiments within an experimental domain have
the capacity to be executed. Executing an experiment requires specifying:

• a set of interventions (independent variables and the values to set them
to),

• a set of observations (dependent variables to be recorded), and

• the number of subjects to draw from each subject class.

AMELIE assumes that the result of executing an experiment will be a list of
independent trials, with data for each requested observation.

4 CHAPTER 1. INTRODUCTION

1.4 S/HAWK’s Validation Strategy

HAWK defines an experimental domain, as described above, where a small,
domain-specific language (DSL) defines each experiment. While an experimen-
tal domain would normally provide experiments that utilize real-world data,
HAWK provides an experimental domain where each experiment is fully de-
termined by the DSL, which will include a structural casual model and will
indicate which variables are independent or dependent. However, HAWK does
not expose the model itself to AMELIE; HAWK only exposes data generated
from the model. This allows an AMELIE developer to validate that AMELIE
enables a scientist to derive a model from data. The general validation workflow
would look something like the following:

1. Alice creates a model M in the HAWK DSL which specifies the relation-
ship between three independent variables, I = {a, b, c}, and two dependent
variables, D = {d, e}.

2. Alice compiles this model into an experiment, E, which exposes a subset
EI of I and a subset ED of D

3. Bob, if he desired, could use SHAWK to inspect the experiment E (pos-
sibly generating a few samples) before using AMELIE.

4. Bob, using AMELIE, sees that E is an available experiment declaring
independent variables EI and dependent variables ED.

5. Bob uses AMELIE’s tools to construct a model M ′ to represent the rela-
tionship amongst the variables exposed by E.

6. Once confident, Bob shows M ′ to Alice, who can compare M ′ to M and
confirm if AMELIE (and Bob) were able to derive the correct relationship
amongst the variables.

This testing workflow has several advantages. First, the isolation between
Alice and Bob mirrors the relationship between a scientist and a domain. Be-
cause Bob can only see data generated from Alice’s model, Bob does not know
the precise details of the model. Second, Bob’s ignorance of Alice’s model ensures
that any correct model derived by AMELIE and Bob was derived exclusively
from information that did not include Alice’s model.

Chapter 2

HAWK DSL

HAWK provides a small, extensible DSL (domain specific language) that can
be utilized to implement different types of models. This chapter discusses the
HAWK DSL and many new techniques used to create an easily extendable DSL.

2.1 Definition and Structure

Overall, the syntax of the HAWK DSL bears some resemblance to C [7] or to
Go [2]. Examples of the HAWK DSL are made available in Appendix A.2 and
A.3.

The HAWK DSL allows a programmer to specify a set of independent, de-
pendent, and latent variables and to specify the relationship between those vari-
ables. Appendix A.2 shows an example linear model (based off of a model cre-
ated to predict DBMS performance [5]) of exclusively dependent variables. Ap-
pendix A.3 shows example code that creates a Bayesian model with an indepen-
dent variable (wearing raincoat), a dependent variable (average rainfall),
and a latent variable (average humidity). Both of these examples define a
subject class tree, as well as the frequency of various subjects within non-leaf
nodes.

HAWK’s main capabilities include the following:

• Define Bayesian networks with latent and non-latent variables

• Define structural equation models with latent and non-latent variables

• create subject class hierarchies to represent subject pools or populations

2.1.1 Bayesian Networks

Bayesian networks are commonly used to express relationships between multiple
categorical variables [11], and are often used in machine learning [4].

HAWK enables a programmer to define an extended Bayesian network. Ap-
pendix A.3 shows how variables within a Bayesian network are defined. The
opening Bayes declaration tells HAWK that the following variable clauses rep-
resent categorical, Bayesian variables. The first variable defined—wearing raincoat—
includes the line intervene = true, which makes the variable independent.

5

6 CHAPTER 2. HAWK DSL

(a) Tetrad Master Graph (b) Tetrad DAG

(c) Tetrad PM

(d) Tetrad IM

Figure 2.1: TETRAD representation of Appendix A.3

The next two lines describe the variable’s possible values, and the probability
of those values.

The variable average rainfall shows a more complicated case, where the
value of the variable is determined by other variables, not just a static proba-
bility table. The parents specifier of the variable clause lists two variables that
affect average rainfall. They are average humidity and average temperature.
In this variable clause, the probs key-value pair is substantially expanded. The
probabilities are listed in canonical order [11], as they are in TETRAD [12]1.

The Bayesian network represented in Appendix A.3 can easily be constructed
in TETRAD. This is shown in Figure 2.1.

Appendix A.3 shows another important feature of HAWK, the from keyword.
The second and third usage of the Bayes keyword uses a from clause as a sort
of inheritance. A Bayesian network with a from clause specifying a parent p
will inherit all of p’s variables, and has the opportunity to override properties

1TETRAD is a tool for creating and manipulating statistical models in a user-friendly and
graphical environment [12]

2.1. DEFINITION AND STRUCTURE 7

Figure 2.2: Graphical representation of linear model

of any variable. For example, the code in Appendix A.3 creates a new Bayesian
network called west, which is exactly the same as the Bayesian network main,
except that the probability table for the average temperature variable has
been overwritten. Both main and west are then assigned to subject classes.

2.1.2 Linear models

Linear models and structural equation models can be implemented in the HAWK
DSL as well. HAWK defines a linear model as a collection of variables which
are linear combinations of other variables and an error term E sampled from
some parameterized distribution. In the example provided in Appendix A.2,
the distribution is the normal distribution with mean and standard deviation
parameters. The model could be represented mathematically as follows:

user time = E(5.5, 1.0)
num major faults = E(10.0, 2.0)

num soft irq requests = 10.5 · user time

+ 29.8 · num major faults

+ E(1.0, 0.01)
io wait ticks = 5.0 · num io requests + E(1.2, 0.1)
system time = 12.8 · num io requests

+ 2.2 · user time

+ E(0.0, 3.0)

(2.1)

The model can also be partially represented graphically, as shown in figure
2.2 and in the paper this model is derived from [5].

The system of equations is evaluated through standard methods [4], which
involves a simple algorithm that determines the value for a variable as soon as
all of the variables it depends on have been evaluated. This means that there
cannot be any circular dependencies. In other words, just like with a Bayesian
network, the graph representation of the model must be acyclic [11].

Linear models can take advantage of the from keyword just as Bayesian
models do, although the example in Appendix A.2 does not do so.

2.1.3 Subject Class Trees

All HAWK models contain a subject class tree, even if the tree contains only
one node. Each non-leaf node of a subject class tree is exclusively treated

8 CHAPTER 2. HAWK DSL

as a combination of its children, and the proportions are determined by the
specified frequency. For example, in Appendix A.2, the databases non-leaf
node is specified as being made up of 50% MySQL subjects and 50% Oracle

subjects.
A HAWK user determines what linear or Bayesian model is used for a given

subject class by specifying the bayes or linear property of a leaf subject class,
as shown in both Appendix A.3 and A.2.

If a user tries to take 100 samples using the databases subject class, 100
random subjects will be selected, 50 from MySQL and 50 from Oracle, because
the databases subject class is specified to contain only two children and has a
freq (frequency) of [0.5, 0.5].

2.2 Implementing an extensible DSL

Writing a DSL that can be easily extensible requires some planning. The HAWK
compiler is split into five phases, some of which match up with traditional
compilers, while others have been modified for extensibility. A diagram of the
phases is made available in Figure 2.3.

2.2.1 Lexing and Parsing

In phase 1, HAWK performs lexing and parsing. HAWK uses the ANTLR4
parser and lexer generator [10], which allows for quick modifications to the
grammar to be quickly transformed into parsing and lexing code. The formal
grammar for the HAWK DSL appears in Appendix A.1. The grammar is also
designed so that new types of models can be easily integrated with existing
subject class trees (see the Linear an Bayes keywords). In fact, the Linear

keyword was added in exactly this way.
ANTLR4 will automatically generate Java code to visit nodes in a parsed

AST, but ANTLR4 does not generate precisely the correct class structure for use
with HAWK. As a result, the ANTLR4 internal AST is translated into HAWK’s
AST classes. This adds a slight delay to expansion, since a new, empty class
(that extends a base AST class) must be manually created for each new AST
type. This is fairly trivial: for example, when adding the Linear features,
only four new classes needed to be created. Additionally, this process could be
automated.

2.2.2 Static Analysis

In phase 2, HAWK performs static analysis. While traditional compilers build
symbol tables and perform a linear static analysis of an AST [1], the HAWK
compiler uses a modular static analysis system. After the AST is constructed,
it is traversed in order, and events are published whenever a node is entered
or exited. Static analysis modules can subscribe to events for specific types of
AST nodes, and throw errors at anytime during the process. This allows the
static analysis routines used for Bayesian models to be cleanly and completely
separated from the static analysis routines used for linear models.

For example, one static analysis module, that checks to make sure that a
model has a root subject class, subscribes to the enter event for the subjclass

2.2. IMPLEMENTING AN EXTENSIBLE DSL 9

Figure 2.3: Phases of the HAWK compiler

10 CHAPTER 2. HAWK DSL

node and ensures that it is triggered at least once.
In addition to making static analysis code modular, this approach to static

analysis has the benefit of being easily multithreaded. HAWK uses Google
Guava’s EventBus, which can deliver events asynchronously to subscribers [3].
While HAWK is too simple to gain any performance benefits from this, this ap-
proach allows for each static analysis model to run in parallel, and thus complete
much faster. It also lifts the burden of synchronization that comes with trying
to multithread a traditional static analysis system because there is limited data
sharing between modules and because each module will eventually process every
event it subscribes to, in order.

2.2.3 IR Generation

Like many compilers [1], HAWK transforms a validated AST into an interme-
diate representation (IR) in phase 3. This creates isolation between the specific
grammar (which is subject to be extended and changed) and the code that di-
rectly constructs and samples data. HAWK emits IR that can be executed by
the HAWK virtual machine (VM), which is a stack-based interpreter that turns
IR code into Java objects that support running experiments and generating
data.

Generating IR code is essential to an extensible compiler because it greatly
simplifies final code generation. When the grammar changes, the VM doesn’t,
which ensures that previously compiled models will still function. Addition-
ally, this provides the developer with the convenience of some higher-level VM
functions, as opposed to having to translate directly from AST to Java object.

2.2.4 Storage

In phase 4, HAWK stores the generated IR into a database that can be accessed
by SHAWK and the HAWK domain plugin interface. Testing shows that storing
the IR instead of a serialized Java object results in less data being stored in the
database.

While this decision has nothing to do with making the HAWK compiler
extensible, it does greatly aid in integrating AMELIE and HAWK. Having code
stored in a database that is accessible to both the HAWK user and the domain
interface plugins is convenient, and avoids creating multiple models with the
same name.

2.2.5 Execution

Phase 5 occurs when SHAWK or the domain plugin requests an actual Java
object capable of performing experiments. The IR code for a model is fetched
from the database and executed in the VM, and the final Java object is returned.
The final Java object returned implements an interface that the HAWK domain
plugin knows about, and thus the domain plugin is able to process the request.

Some may be concerned with the performance of re-executing the IR code
each time an experiment request is made. If performance becomes a problem,
the domain plugin could be easily modified to cache the compiled Java object.
However, testing at even very large problem sizes (over 1000 variables) shows
that IR execution never takes longer than 500ms.

Chapter 3

Designing HAWK: GUI or
DSL?

At first glance, a DSL may seem like an odd choice for creating a validation
tool. Initially, HAWK was created as a GUI application that allowed the user
to visually construct Bayesian networks using CMU’s TETRAD [12]. There was
immediate concern over how future versions of TETRAD would interact with
HAWK, and what an upgrade path would look like. Additionally, as HAWK
was further developed, it became clear that HAWK would need to be able
to produce other types of models, like structural equation models and Markov
chains. Since the AMELIE group decided to incrementally make HAWK’s model
more expressive as domains are encountered that need more expressivity, HAWK
was likely to undergo a multitude of changes and evolutions.

3.1 Accommodating Future Versions of TETRAD

The GUI version of HAWK used Swing components provided by TETRAD.
This became immediately complex. The main TETRAD panel assumes that it
is contained within a JDesktopPane, an assumption that prevented HAWK from
having a polished look and feel. Many small hacks and tweaks were applied,
but, as a design principle, the actual TETRAD code was left unaltered. This
led to occasional and difficult-to-trace mouse glitches, scroll bar failures, and
other UI oddities.

The primary concern was not the creation of a GUI beyond reproach. The
AMELIE group did not mind a few rough spots in their testing tool. The main
complications arose when trying to design HAWK such that future versions
of TETRAD could simply be “dropped in”. Several strategies were developed
while pursuing this goal, each with notable limitations. These strategies are ap-
plicable to any Java application that includes large portions of another project.

3.1.1 JUnit Testing

Writing JUnit tests [8] for another developer’s code may sound like a particularly
dull experience, but a large library of tests that check every assumption made
about TETRAD proved to be incredibly useful. While these tests never provided

11

12 CHAPTER 3. DESIGNING HAWK: GUI OR DSL?

the desired “drop in replacement”, they did quickly signal where changes in the
API had been made, making it substantially easier to locate and modify HAWK
code to account for changes in TETRAD.

3.1.2 Reflection-based Approaches

Several attempts were made to use Java’s reflection capabilities [6] to automati-
cally determine and account for API changes1. Regardless of the approach used,
at least one of several assumptions must be made:

• the name of the desired method will not change,

• the signature of the desired method will not change,

• the name of a class to be extracted from a hierarchy will not change,

• if an object of a certain type T is desired, and objects of types S =
{t1, t2, ...} are available, a method that takes some subset of S as param-
eters and returns an object of type T will return the correct result.

Various approaches using some subset of the above assumptions generated
various degrees of success. Searching for methods by signature proved to be
effective at dealing with changes in class hierarchies. Searching for methods
by name proved to be effective at dealing with changes within a class hierarchy
when the hierarchy otherwise remained the same. Other techniques did not show
much promise, and no technique was able to automatically transition HAWK
from TETRAD 4 to TETRAD 5.

3.1.3 Limitations

Ultimately, reflection-based techniques proved to correctly compensate for changes
within TETRAD about as often as they catastrophically failed. It seems that
the JUnit tests that were created and maintained are invaluable, as any failure
serves to quickly pinpoint changes in the TETRAD API.

However, the JUnit tests were only as useful as they were thorough. One
must test that the proper buttons appear somewhere in the component hier-
archy, and that clicking on one such button produces the desired result. Es-
sentially, every action that needs to be supported within an external piece of
software needs to be tested. Obviously, most developers will find a balance be-
tween test exhaustiveness and convenience, as making tests excessively detailed
has diminishing returns.

3.2 Extensibility

While the ”back-end” model code (TETRAD interaction, storing subject class
trees, etc.) can be easily extended with simple additions, GUI code cannot.
Creating a tree structure that contains multiple TETRAD sessions is trivial,
but modifying the current GUI to represent that tree is not. Many assumptions
and hacks were used to integrate the TETRAD window into the right-hand-side

1Reflection gives a programmer the ability to programmatically enumerate and examine a
Java class and its methods.

3.2. EXTENSIBILITY 13

of the old HAWK GUI. While wrapping another panel around the TETRAD
GUI seems simple, tweaking and fine-tuning mouse events and resize events
would be far from simple.

Therefore, in order to choose between a GUI and a DSL, we considered the
cost of extending each.

The costs of extending a GUI include the following:

• Unit tests must be completely rewritten. Adding another layer of wrap-
ping means that any testing code that references a specific field or button
must be reworked.

• Resize events and UI tweaks must be reexamined. This may seem simple,
but in practice it can require many hours of developer time.

• Polish must be reapplied. Making a GUI application look nice is not easy,
and making structural changes to a GUI essentially requires that all the
polish be reapplied.

• Structural changes in the model may require the creation of new GUI
elements. While one would not have to create a tree from scratch, one
does have to implement a TreeModel and test it against the GUI.

The costs of extending a DSL include the following:

• Unit tests remain exactly the same. Extensions to the DSL can be added
by extending the formal grammar, which should preserve backwards com-
patibility. If a change does not preserve backwards compatibility, then
failing test cases will serve to check how far a grammar change extends.

• There are no resize events or UI tweaks. There are tools to verify that a
grammar is parsable automatically and quickly. These tools are incredibly
well developed and provide useful error messages.

• Polish is automatically reapplied. When one formally specifies a grammar,
one gets error message generation for free.

• Structural changes in the model are cleanly and easily represented as struc-
tural changes in the grammar.

We determined that it would much easier to extend a DSL than a GUI (some
of the complications of developing an extensible compiler are discussed in 2.2),
thus HAWK shifted from being a GUI to being a compiler2.

2The HAWK GUI code is now being transformed into a prototype of AMELIE itself.

14 CHAPTER 3. DESIGNING HAWK: GUI OR DSL?

Chapter 4

SHAWK

During the development of HAWK, it became clear that we needed some way to
test HAWK itself, without using AMELIE. Thus, we developed SHAWK, which
is described in the this chapter.

4.1 Purpose and Function

SHAWK, shown in Figure 4.1, is a companion tool to HAWK that allows a user
to run experiments against a HAWK world. The main goal of SHAWK was in
its development: to navigate and map the requirements for the domain plugin
interface. It is worth noting that SHAWK does not actually use the domain
plugin interface, but interacts directly with the HAWK compiler (specifically,
phase 5).

Data sampled from the metrology model (listed in A.2) using the SHAWK
tool is shown in Appendix A.4.

4.2 Implementation

SHAWK makes extensive use of Hibernate and Java Swing to provide lazy-
loading and concurrency control. Unlike the domain interface plugin, SHAWK
does not allow the user to specify multiple disjoint subject classes. A user can
only specify one subject class at a time.

15

16 CHAPTER 4. SHAWK

Figure 4.1: The SHAWK Interface

Chapter 5

Case Study: DBMS
Metrology

In order to ensure that HAWK was capable of testing AMELIE, we designed
and implemented a case study using a HAWK and a prototypical version of
AMELIE.

5.1 Introduction

In their paper titled “DBMS Metrology: Measuring Query Time”, Snodgrass et
al. note that it is difficult to obtain both precise and accurate measurements of
the time spent executing a query. Snodgrass et al. present a model supported
by strong correlational analysis relating various performance measures. From
this model, Snodgrass et al. developed an accurate query time measurement
procedure [5].

In this case study, we implement the presented model in the HAWK DSL.
Then, we use the implemented model to test a prototypical version of AMELIE.
The exact methodology of our case study is given in Section 5.2.

5.2 Methodology

Eventually, AMELIE will need to be able to analyze behavior exhibited by
complex systems. One such system might be DBMSes, which produce data
such as query processing time, index miss counts, etc. that can be used to
analyze the system’s overall behavior. Ideally, AMELIE will enable a scientist to
construct an explanatory model of these systems. In order to test this capability,
we created a model of a DBMS in the HAWK DSL. This model enables the
production of fake data that has structural similarity to the real data that would
be produced by a DBMS. Then, using only the experimental domain interface
exposed, we used AMELIE to construct the best model of the generated data
as possible.

We followed a procedure similar to the one described in Section 1.4.

1. “Alice” constructed a structurally accurate model of DBMS query time in
the HAWK DSL.

17

18 CHAPTER 5. CASE STUDY: DBMS METROLOGY

2. “Bob” uses SHAWK to to inspect the experiment which “Alice” has made
visible.

3. “Bob”, with no knowledge of the model created in the HAWK DSL, at-
tempts to model DBMS query time in AMELIE.

4. “Bob” forms hypotheses about DBMS query time, tests them, and then
forms new hypotheses.

5. Once “Bob” is satisfied with his model, he shows his model to “Alice”.
Looking at both the model discovered by “Bob” and the model created
created by “Alice”, “Alice” and “Bob” decide if the two are close enough,
or if the differences between the models indicate a bug in AMELIE.

Note that this methodology has two important properties previously dis-
cussed in Section 1.4. First, “Bob” operates with no knowledge of the model
created by “Alice”. Because of this, any model that “Bob” derives from using
AMELIE must have been derived without any specific knowledge of the model.

5.3 Constructing the HAWK Model

In their paper [5], Snodgrass et al. present an accurate model for estimating
query execution time. Their method was derived from the basic structural
casual model shown in Figure 2.2. We (“Alice”) parameterized this model using
arbitrary values, being careful to preserve the correlation between variables.
The model produced is represented by both the equations in Section 2.1.2 and
in the HAWK DSL shown in Appendix A.2.

We (“Alice”) compiled the HAWK DSL shown in Appendix A.2 under the
name “Metrology”.

5.4 Using SHAWK

After the model was compiled, we (“Bob”) used SHAWK to inspect the experi-
ment made available by “Alice”. SHAWK is shown in figure 5.1. “Bob” is able
to see what variables and subject classes have been made available. If desired,
one could choose to run a few experiments and analyze the results by hand.

5.5 Using AMELIE to Construct a Model

After the model was compiled, we (“Bob”) opened AMELIE in order to begin
the scientific process. The initial, untouched AMELIE prototype window is
shown in Figure 5.3. Notice that the six panels in Figure 5.3 “match up”
with the panels in the AMELIE diagram (Figure 1.1) that are described in
Section 1.3.1.

The upper-left panel represents model construction. In this early prototype
of AMELIE, a model is limited to a listing of variables. In Figure 5.3, the list is
pre-populated with values provided by the experimental domain plugin (in this
case, the values specified as visible by “Alice”).

5.6. TESTING HYPOTHESIS 19

Figure 5.1: SHAWK being used to examine an experiment

The upper-middle panel represents hypothesis generation. Currently, only
simple hypotheses are supported. The panel is designed to read like a sentence.
An example hypothesis, depicted in Figure 5.2, could be read as: “positive
change in user time causes positive change in system time”. After proposing
a hypothesis, the hypothesis is represented textually in the box at the bottom
of the panel.

The upper-right panel represents experiment design. Here, the user decides
how many samples to draw from each subject class. The other panels are dis-
cussed in Section 5.6.

Here, we (“Bob”) specify a few hypotheses about the relationship between
each variable. After doing so, we can select the subject classes we want to use for
an experiment testing those hypotheses. Then, we can execute the experiment
by pressing the “Run” button in the upper-right panel.

5.6 Testing Hypothesis

We (“Bob”) specified several hypotheses about the model, shown in the upper-
middle panel of Figure 5.4. We (“Bob”) then decided to take 300 samples from
the databases subject class, and 10 samples from the MySQL and Oracle subject
classes.

After clicking the “Run” button, the bottom panels will be populated, as
shown in Figure 5.4.

The bottom-left panel represents data validation, which deviates from the
chart (the chart specifies “model evaluation”). Here, the data from the exper-
iment is shown in a table; this data is checked to make sure that each variable
falls into an appropriate range and is an appropriate type. For our model,

20 CHAPTER 5. CASE STUDY: DBMS METROLOGY

Figure 5.2: An example hypothesis

AMELIE simply makes sure that the values are discrete (not categorical) and
within integer bounds.

The bottom-middle panel represents hypothesis evaluation. Each hypothe-
sis is listed, along with whether or not the hypothesis is supported or not sup-
ported with respect to the data generated. In this early prototype of AMELIE,
hypotheses are evaluated based on a simple covariance test.

The bottom-right panel represents reliability analysis, which, in this early
prototype of AMELIE, simply displays the total number of hypotheses and the
total number of supported hypotheses.

Hypotheses may be removed from the upper-middle panel by pressing the
“Remove” button, and new hypotheses may be added. New data may be sam-
pled by simply clicking the ”Run” button again. Using these simple tools, we
(“Bob”) are able to quickly test hypotheses and create new ones.

5.7 Model Comparison

Because the current version of AMELIE only supports a simple covariance test,
and because the model created in the HAWK DSL only has positive correlations,
the model produced by AMELIE is not very advanced. Essentially, we (“Bob”)
were able to learn that a positive change in each variable correlates with a
positive change in every other variable.

While this may not seem like a very advanced model, it is an entirely accurate
one. When we (“Alice” and “Bob”) compare the model discovered by AMELIE
to the model used in HAWK, we can conclude that the model discovered by
AMELIE is perfectly accurate, but did not exhibit terribly high fidelity.

The next question we (“Alice” and “Bob”) must consider is whether the
lack of fidelity created by the AMELIE model indicates a bug in AMELIE.

5.7. MODEL COMPARISON 21

Figure 5.3: A fresh AMELIE session

Figure 5.4: An AMELIE session

22 CHAPTER 5. CASE STUDY: DBMS METROLOGY

Since simple covariance tests are not able to generate a more complex model,
we (“Alice” and “Bob”, who both paid attention in their statistics classes) can
conclude that this is not a bug in AMELIE, but a feature deficiency.

5.8 Results

The case study presented above shows that HAWK can be successfully used to
diagnose issues with AMELIE. In this study, HAWK and AMELIE users were
able to differentiate between model accuracy issues and model fidelity issues in
order to diagnose a feature deficiency. The case study also shows that the testing
methodology described in Section 1.4 is viable and can successfully simulate the
“knowledge gap” between a scientist and the object of study.

While the issue diagnosed may seem trivial in retrospect, the case study still
demonstrates that HAWK is able to communicate with AMELIE and provide
data based on user-defined models, which will doubtlessly be useful in the future.

Chapter 6

Conclusion

Overall, HAWK and SHAWK met or exceeded their requirements. The precise
usefulness of either tool cannot be fully determined until AMELIE is further
developed, but we can still make some observations presently.

6.1 Results

HAWK and SHAWK are shown to be fully capable of testing AMELIE at every
level of development, including the early prototype presented in Chapter 5.
Chapter 2 demonstrates how linear and categorical models can be defined in
the HAWK DSL, and Chapter 4 shows how the SHAWK interface can sample
from those models. All the tools needed to implement the validation strategy
described in Section 1.4 have been created.

Because the goals of AMELIE are so broad, good testing tools are important.
By enabling the development of AMELIE, HAWK represents a successful first
step on the road to fully automated casual analysis. This significantly furthers
AMELIE’s goal of using scientific tools to analyze computer systems [9] as well
as providing a tool to assist and accelerate scientific research in a multitude of
domains [13].

6.2 Future Work

The experiment model discussed in Section 1.3.2 may be too constraining for
some domains. For example, in a quantum physics domain, observing a variable
may alter the state of that variable. We hope to expand AMELIE’s capabili-
ties as new domains are encountered, instead of trying to generalize the entire
scientific process from the start.

23

24 CHAPTER 6. CONCLUSION

Appendix A

Code and Data Listings

A.1 HAWK DSL ANTLR4 Grammar

grammar HawkGram;

prog : stmt+ ;

stmt : bayes # BayesStmt
| l i n e a r # LinearStmt
| s u b j c l a s s # SubjClassStmt
;

bayes : ’ Bayes ’ ID fromexpr ? ’{ ’ v a r i a b l e l i s t ’} ’ ;

fromexpr : ’ from ’ ID ;

v a r i a b l e l i s t : v a r i a b l e+ ;

v a r i a b l e : ’ va r i ab l e ’ ID parents ? ’{ ’ kv+ ’} ’ ;

parents : ’ parents ’ ’ (’ ID (’ , ’ ID)∗ ’) ’ ;

kv : ID ’= ’ v ;
v : ID # IDValue
| FLOAT # FloatValue
| ’{ ’ ID (’ , ’ ID)∗ ’} ’ # IDList
| ’{ ’ FLOAT (’ , ’ FLOAT)∗ ’} ’ # F l o a t L i s t
;

l i n e a r : ’ Linear ’ ID fromexpr ? ’{ ’ v a r i a b l e l i s t ’} ’ ;

s u b j c l a s s : ’ c l a s s ’ ID ’{ ’ i n n e r c l a s s+ ’} ’ ;
i n n e r c l a s s : kv # KVofClass

| s u b j c l a s s # InnerClas sOfClas s

25

26 APPENDIX A. CODE AND DATA LISTINGS

;

ID : [a−zA−Z] [a−zA−Z0−9]∗ ;
INT : [0−9]+ ;
FLOAT: [0−9]∗ ’ . ’ [0−9]+ ;
WS: [\ t \n\ r]+ −> sk ip ;

A.2 HAWK DSL Example: Linear Model

Linear main {
v a r i a b l e use r t ime {

observe = true
d i s t r i b = norm
mean = 5 .5
dev = 1 .0

}

v a r i a b l e num major fau lts {
observe = true
d i s t r i b = norm
mean = 10 .0
dev = 2 .0

}

v a r i a b l e num io reques t s
parents (user t ime , num major fau lts) {

observe = true
c o e f f s = { 10 . 5 , 29 .8 }
d i s t r i b = norm
mean = 1 .0
dev = 0.01

}

v a r i a b l e n u m s o f t i r q r e q u e s t s
parents (num io reques t s) {

observe = true
c o e f f s = { 2 .0 }
d i s t r i b = norm
mean = 0 .5
dev = 0.01

}

v a r i a b l e i o w a i t t i c k s
parents (num io reques t s) {

observe = true
c o e f f s = { 5 .0 }
d i s t r i b = norm

A.3. HAWK DSL EXAMPLE: BAYES MODEL 27

mean = 1 .2
dev = 0 .1

}

v a r i a b l e system time
parents (num io requests , u s e r t ime) {

observe = true
c o e f f s = { 12 . 8 , 2 . 2 }
d i s t r i b = norm
mean = 0 .0
dev = 3 .0

}
}

c l a s s databases {
f r e q = { 0 . 5 , 0 . 5 }

c l a s s MySQL {
l i n e a r = main

}

c l a s s Oracle {
l i n e a r = main

}
}

A.3 HAWK DSL Example: Bayes Model

Bayes main {

v a r i a b l e wea r ing ra incoa t {
i n t e rv ene = true
va lue s = { yes , no }
probs = { 0 . 5 , 0 . 5 }

}

v a r i a b l e average humidity {
observe = f a l s e
va lue s = { low , medium , high }
probs = { 0 .333 , 0 . 333 , 0 .333 }
}

v a r i a b l e average temperature {
observe = true
va lue s = { low , medium , high }
probs = { 0 .333 , 0 . 333 , 0 .333 }
}

28 APPENDIX A. CODE AND DATA LISTINGS

v a r i a b l e a v e r a g e r a i n f a l l
parents (average humidity , average temperature) {

observe = true
va lue s = { low , medium , high }
probs = { 0 .333 , 0 . 333 , 0 . 333 ,

0 . 333 , 0 . 333 , 0 . 333 ,
0 . 333 , 0 . 333 , 0 . 333 ,
0 . 333 , 0 . 333 , 0 . 333 ,
0 . 333 , 0 . 333 , 0 . 333 ,
0 . 333 , 0 . 333 , 0 . 333 ,
0 . 333 , 0 . 333 , 0 . 333 ,
0 . 333 , 0 . 333 , 0 . 333 ,
0 . 333 , 0 . 333 , 0 .333 }

}
}

Bayes west from main {
v a r i a b l e average temperature {

probs = { 0 . 2 , 0 . 4 , 0 . 4 }
}

}

Bayes ea s t from main {
v a r i a b l e average temperature {

probs = { 0 . 4 , 0 . 4 , 0 . 2 }
}

}

c l a s s usa {
f r e q = { 0 . 5 , 0 . 5 }

c l a s s ea s t {
f r e q = { 0 . 3 , 0 . 7 }
c l a s s boston {

l i n k v i s i b l e = f a l s e
bayes = eas t

}

c l a s s nyc {
bayes = eas t

}
}

c l a s s west {
bayes = west

}
}

A.4. METROLOGY DATA 29

A.4 Metrology Data

user time system time num soft

irq requests

num io requests num major

faults

io wait ticks

5.5625677 5995.9507 935.35895 467.431 13.692482 2338.3452
3.4872932 4116.587 642.6784 321.0914 9.512383 1606.6946
6.107203 3752.416 584.8264 292.16888 7.6191006 1461.9882
4.7216887 4012.004 625.86505 312.6842 8.795301 1564.5656
3.7462072 3989.9043 621.26996 310.38702 9.06199 1553.0005
4.6200404 4076.5034 635.5762 317.54617 8.994296 1588.8329
4.0384793 3628.669 566.1139 282.81403 8.0340605 1415.2156
4.300033 4557.1655 711.69855 355.61087 10.384182 1779.1432
5.7332935 4066.2856 633.69525 316.59973 8.570033 1584.1956
4.7857704 4540.9033 708.3361 353.915 10.156842 1770.7606
4.8017826 4021.848 627.5197 313.5036 8.795212 1568.6982
5.9082108 3975.1292 620.09656 309.7947 8.280253 1550.2407
5.831276 4794.2593 747.1861 373.3463 10.440883 1867.9811
5.0885 4939.164 771.07666 385.28223 11.102222 1927.5942
4.786162 5326.9463 831.52313 415.50745 12.222858 2078.8223
6.6388345 4319.1787 673.48096 336.48685 8.91905 1683.6306
4.0768127 4914.5757 767.7597 383.62048 11.403119 1919.0034
5.4956684 4995.105 779.3058 389.40073 11.097304 1948.068
5.0446773 4555.5015 710.3521 354.92676 10.10002 1775.8998
4.854419 5041.2065 787.00916 393.25327 11.452579 1967.5436
5.3501463 5312.4062 828.7054 414.10483 11.977376 2071.819
5.8807726 3308.9163 515.2786 257.39346 6.5317283 1288.1538
6.448221 3465.6326 539.64197 269.57294 6.7411327 1349.0381
6.666109 4750.9624 740.39435 369.95178 10.031879 1850.9818
6.2450247 5300.022 825.9033 412.70142 11.615298 2064.5593
5.2850003 6154.859 961.1476 480.31784 14.222753 2402.7156
5.184474 4414.844 688.85474 344.1836 9.689387 1722.114
6.0469556 4961.51 773.3723 386.43665 10.8037405 1933.4927
6.049392 3182.123 496.15674 247.82149 6.1506243 1240.362
4.9871254 4444.0156 693.61145 346.55392 9.8385515 1734.0029
6.034366 5660.133 882.6834 441.0861 12.641324 2206.7163
4.8388605 4635.9707 723.0793 361.29672 10.38518 1807.6073
3.9859612 5050.865 788.1827 393.83813 11.777694 1970.3978
4.620126 3508.3257 547.697 273.59943 7.5198994 1369.1754
6.423861 5591.284 871.44244 435.4835 12.316348 2178.6619
6.6981397 5541.8633 864.4398 431.972 12.101948 2161.137
3.1830409 5393.265 842.3541 420.92865 12.970346 2105.8982
5.452546 5749.4395 897.3222 448.40292 13.092837 2243.359
4.292783 4576.401 713.8326 356.66257 10.421572 1784.5093
4.468278 3370.1455 525.6753 262.582 7.203528 1314.1284
5.3639364 5122.398 798.7377 399.11472 11.469025 1996.8445
4.882136 4924.534 768.5077 384.0027 11.131659 1921.0883
6.2148046 5076.373 790.8335 395.16336 11.036693 1977.237
5.764275 4454.1973 694.1575 346.822 9.57368 1735.2626
4.4891486 5520.8965 862.32465 430.90747 12.844368 2155.7986

30 APPENDIX A. CODE AND DATA LISTINGS

4.350147 3579.1882 559.1817 279.34 7.806723 1398.1053
5.2970223 5811.075 906.58795 453.04974 13.30346 2266.3677
6.0599637 5956.624 929.2576 464.3745 13.414337 2323.0483
5.222454 3634.2668 567.5357 283.52042 7.6400843 1418.6199
5.5518084 5203.9126 811.78784 405.64517 11.622747 2029.3707
6.2367616 4475.4136 697.1454 348.3233 9.45737 1742.9364
5.7919683 3154.6086 491.48273 245.49095 6.1639657 1228.7098
6.0341587 5751.706 897.765 448.62802 12.894904 2244.4114
5.284748 4448.2314 693.32336 346.41116 9.729177 1733.3838
4.161493 3812.257 594.7264 297.1186 8.470395 1486.7919
5.5551805 4886.45 762.30505 380.90158 10.791129 1905.6251
6.853022 4624.8975 720.7458 360.12323 9.636576 1801.9186
5.7716026 6270.044 978.2657 488.8786 14.338191 2445.6436
4.188584 3593.3066 560.4972 280.00342 7.8867598 1401.2012
4.660884 4223.317 658.3129 328.9089 9.361556 1645.8992
7.720205 5380.8164 837.59717 418.55182 11.291766 2094.0742
5.1317196 4658.2217 726.76227 363.12823 10.34384 1816.9194
6.33852 5770.8823 900.35175 449.9153 12.830961 2250.6482
4.7832007 4393.0513 685.1652 342.32855 9.768505 1712.7532
3.9210694 4766.791 743.40643 371.45297 11.049798 1858.5948
5.628235 4672.9956 728.7098 364.1033 10.202037 1821.611
4.56311 4503.706 703.0745 351.28937 10.146561 1757.8237
6.6407766 6888.759 1073.8331 536.6671 15.635901 2684.5784
5.0801897 4820.681 751.70325 375.6048 10.780376 1879.1344
4.8409925 3956.747 617.07056 308.27594 8.605521 1542.5739
3.9580355 4022.099 627.43134 313.46704 9.091102 1568.4766
4.8791704 5631.843 878.6853 439.08813 12.982364 2196.5417
4.994085 4699.598 732.5044 366.00867 10.489131 1831.2871
3.9902897 4752.216 740.8228 370.16528 10.981904 1851.9745
5.038764 6646.752 1037.1356 518.32404 15.585162 2592.776
4.711552 3973.2473 620.08685 309.78973 8.7028885 1550.4182
5.6936417 4603.8384 717.85315 358.6797 9.997129 1794.4962
4.023219 3331.6252 520.26483 259.88208 7.2697945 1300.5806
5.380493 5382.625 839.127 419.32352 12.142326 2097.7192
6.7314863 5226.1655 815.03595 407.2632 11.2614 2037.6124
6.7086506 5452.8945 850.65454 425.08084 11.866732 2126.4768
4.8099294 5461.444 853.1279 426.31314 12.577367 2132.6675
5.571152 3533.9028 550.54614 275.02258 7.2329154 1376.285
5.2361307 4177.1406 651.3458 325.4284 9.041798 1628.1405
4.1578736 3178.5256 495.46 247.47739 6.805593 1238.5879
6.444685 5605.252 874.0995 436.79544 12.352834 2185.1162
4.947091 4023.0825 627.477 313.48788 8.743244 1568.5969
4.5404882 3475.2134 542.3674 270.92957 7.4584675 1355.8069
6.3780518 6267.8486 977.73267 488.62134 14.115547 2444.216
5.7979035 4025.831 626.7765 313.1375 8.430636 1566.9723
5.745349 3267.728 508.83646 254.1807 6.471661 1271.7849
6.628685 6450.912 1006.0541 502.7755 14.502126 2515.2166
6.99909 4318.118 672.2758 335.8908 8.7721815 1680.7544
5.189967 4647.563 725.51685 362.5113 10.3026085 1813.6632
6.320595 5033.9336 784.7713 392.13443 10.898609 1961.7925

A.4. METROLOGY DATA 31

6.1959357 4301.7886 670.1022 334.80392 9.017987 1675.157
6.16111 4928.4004 769.0579 384.27728 10.690654 1922.6649
7.5384045 4028.2385 627.60046 313.54996 7.831871 1569.0271
3.0970092 3584.916 559.89276 279.70203 8.261674 1399.4678
4.9084616 3404.3394 530.11554 264.8118 7.1235676 1325.1642
4.565528 3933.6692 613.50195 306.4987 8.642702 1533.7577
6.0223565 4509.918 703.70795 351.6025 9.642589 1759.1987
4.312954 4796.325 748.4698 373.99063 10.996874 1871.3391
6.3578053 4182.012 651.4134 325.45593 8.647887 1628.567
5.2935452 4477.6675 698.30835 348.9014 9.809582 1745.6863
5.147583 3997.539 623.5116 311.50867 8.606039 1558.7351
5.23452 5242.191 818.30927 408.90704 11.843852 2045.7734
5.499662 4010.1284 625.41254 312.45282 8.513612 1563.437
5.818197 2791.2156 435.1695 217.33434 5.20921 1087.8878
7.633819 3960.8953 616.3774 307.94397 7.610503 1540.8468
4.62208 5490.6636 857.7114 428.60126 12.72051 2144.1067
6.7507133 3782.931 588.73535 294.12375 7.4574547 1471.7549
6.1876884 4910.6123 766.92017 383.203 10.645349 1917.228
5.4415183 4509.305 703.2636 351.38763 9.841372 1758.0875
4.959819 3125.2678 487.49896 243.49983 6.3900566 1218.687
5.061334 5144.6367 802.19965 400.84702 11.634158 2005.3702
6.280822 4008.4956 625.06433 312.2729 8.232604 1562.7667
4.544048 3976.2952 620.45245 309.97632 8.7670765 1551.0754
4.7539244 5158.6865 803.66376 401.5732 11.766922 2009.0865
5.9666104 4863.539 758.2526 378.87796 10.578073 1895.5884
6.52931 4939.281 769.9733 384.74353 10.577084 1924.9982
5.266319 4209.068 656.05334 327.7802 9.110173 1639.8937
6.896801 5643.88 880.4135 439.9545 12.300848 2200.8394
7.0388103 3923.2026 610.83374 305.16418 7.726232 1527.0189
5.9998465 5850.703 912.79364 456.14038 13.158563 2281.85
6.506529 6618.824 1032.2866 515.8885 14.985581 2580.445
5.36405 3507.3962 547.3883 273.44366 7.2531195 1368.5981
4.4354525 3617.7227 564.1754 281.83154 7.861099 1410.2571
5.198028 3947.5654 615.8498 307.6672 8.459096 1539.526
6.780838 4672.483 728.3347 363.91544 9.789127 1820.8105
5.9427395 3766.0544 586.4145 292.9506 7.703189 1465.8761
6.2245483 3212.2583 500.23807 249.86818 6.158076 1250.3885
8.25513 4899.1323 763.7405 381.61703 9.86347 1909.3885
6.850243 4756.116 741.3033 370.40076 9.982955 1853.1348
5.6496487 4464.9927 696.08875 347.79623 9.6468115 1740.1846
6.709769 3839.7078 597.64 298.57062 7.621032 1494.1534
6.940765 3837.987 596.4509 297.97275 7.5196085 1491.0656
5.783805 4554.6665 709.7331 354.61743 9.828769 1774.3868
3.0871902 4517.446 705.5252 352.51596 10.708274 1763.8562
5.901614 3488.8215 543.9914 271.74854 7.006375 1360.0522
6.1426883 5167.1025 805.38513 402.4432 11.307048 2013.3074
2.7678938 3502.6138 547.0789 273.28043 8.161953 1367.5684
5.303328 4054.9722 632.5057 316.00354 8.702092 1581.1051
6.1400237 5733.386 893.66626 446.58405 12.789745 2234.1372
7.495324 4686.8115 730.4914 365.00342 9.573735 1826.3499

32 APPENDIX A. CODE AND DATA LISTINGS

4.7115374 4206.5137 655.78046 327.64108 9.30097 1639.2588
5.891903 5438.3306 847.78015 423.64658 12.106972 2119.2732
5.105165 4780.5977 745.07764 372.28964 10.660883 1862.5881
5.9792876 5712.1533 891.14435 445.32083 12.803219 2227.7258
5.4168463 3533.6526 550.8487 275.17255 7.292448 1377.2087

Bibliography

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1986.

[2] Ivo Balbaert. The Way To Go: A Thorough Introduction To The Go
Programming Language. iUniverse, Inc., 2012.

[3] Bill Bejeck. Getting started with Google Guava: write better, more efficient
Java, and have fun doing so. Community experience distilled. Packt Publ.,
Birmingham, 2013.

[4] Christopher M. Bishop. Pattern Recognition and Machine Learning (Infor-
mation Science and Statistics). Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2006.

[5] Sabah Currim, Richard Snodgrass, Young-Kyoon Suh, Rui Zhang,
Matthew Wong Johnson, and Cheng Yi. Dbms metrology: Measuring
query time. In Proceedings of the 2013 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’13, pages 421–432, New York,
NY, USA, 2013. ACM.

[6] Ira R. Forman and Nate Forman. Java Reflection in Action (In Action
Series). Manning Publications Co., Greenwich, CT, USA, 2004.

[7] Brian W. Kernighan. The C Programming Language. Prentice Hall Pro-
fessional Technical Reference, 2nd edition, 1988.

[8] Vincent Massol and Ted Husted. JUnit in Action. Manning Publications
Co., Greenwich, CT, USA, 2003.

[9] Clayton T. Morrison and Richard T. Snodgrass. Computer science can use
more science. Commun. ACM, 54(6):36–38, June 2011.

[10] Terence Parr. The Definitive ANTLR 4 Reference. Pragmatic Bookshelf,
2nd edition, 2013.

[11] Judea Pearl. Causality: Models, Reasoning, and Inference. Cambridge
University Press, March 2000.

[12] Richard Scheines, Peter Spirtes, Clark Glymour, Christopher Meek, and
Thomas Richardson. The TETRAD project: Constraint based aids to
causal model specification. Multivariate Behavioral Research, 33:65–117,
2009.

33

34 BIBLIOGRAPHY

[13] Richard Snodgrass. Automated causal analysis.
www.cs.arizona.edu/projects/focal/ergalics/autocausalanalysis.html.
Accessed: 2014-05-03.

