Sequences and Expression Evaluation in Icon*

Stephen B, Wampler

TR 81-2

March 1981

Department of Computer Science
The University of Arizona

Tucson, Arizona 85721

*This work was supported by the National Science Foundation under Grant MCS79-03890.

Sequences and Expression Evaluation in Icon

1. Introduction

This paper introduces a notation for the static description of expression evaluation in lcon [7] and uses this
notation to detail the operation of various control mechanisms in Icon. This notation gives insight into the
relationships between Icon control mechanisms and those found in conventional languages. Insights gained
from this notation have also resulted in the design of several new control mechanisms, a number of which have
been implemented in Version 4 of Icon (see the Appendix). This paper refers to expression evaluation in Ver-
sion 4.

2. Expression Evaluation
Most programming languages contain expressions that are evaluated to produce results. A result is either
a value or a variable. Expression evaluation in conventional languages such as Algol always produces exactly
one result. For example, the result of evaluating 1 + 3 is the value 4. Control structures in such languages are
driven by the values of their control expressions. In the Algol expression
if x =y thenz :=0
the comparison of x and y produces a boolean value that is used to determine whether or not the assignment
to z is performed.
Expression evaluation need not produce a result. In SNOBOL4 [9] expression evaluation may produce no
result at all. For example, the expression
EQ(1,0)
fails to produce any result. The concept of failure in SNOBOL4 is equivalent to failure of an expression to
produce a result, while success corresponds to the production of a result.

SNOBOLA4 lacks conventional control structures such as those found in Algol, and instead relics upon the
presence or absence ol results to control a conditional branching mechanism, as in

EQ(X.)Y) :S(LABEL1)F(LABEL2)
which causes a branch to LABEL1if EQ(X,Y) produces a result, and a branch to LABELZ2 otherwise.

Failure is also used to control completion of the evaluation of enclosing expressions. For example, in
evaluation of
Z = EQ(X.)Y) O
assignment of 0 to Z is performed only if X and Y are numerically equal.

Expressions in Icon are capable of generating more than one result in sequence and for this reason are
termed generating expressions [8). Context determines whether evaluation of an expression produces more
than one result. The expression every e is used to produce the entire sequence of results for e .

For example, the expression 1 to 10 is capable of producing the results |, 2, ..., 10. Evaluation of
every write(1 to 10)
writes the results 1, 2, ..., 10. However, in the expression (1 to 10) >= 3, only the results I, 2, and 3 are pro-
duced during evaluation of 1 to 10. since the context only requires a result greater than or equal to 3.

There are no constraints on the length of a sequence of results in lcon. The sequence may be empty, as in
evaluation of 1 =0, or it may contain an infinite number of results, as in the case of 2100, where each result is
an integer randomly selected from the range 1to 100.

The ourcome of expression evaluation in Icon is either a result or failure to produce a result. Expressions
are evaluated in lcon with the goal of producing a result as the outcome [I1]. If the outcome of an expression
evaluation is failure to produce a result, then the evaluation is said to fail, otherwise the evaluation succeeds.
As in SNOBOLA, Icon control structures are driven by the presence or absence of results. For example

if x =ythenz:=0
assigns O to Z il the expression Xy succeeds.

While several of the control structures in Icon resemble control structures in Algol, the use of success or

failure to drive control structures involves some subtle differences [4]. In particular, control structures in

Algol are driven by boolean values, and hence their control clauses must be expressions that produce boolean
results. Thus,

X<y
produces a boolean result in Algol. This, in turn, renders expressions such as
X<y<z

meaningless in Algol.
However, thc outcome of an Icon expression is either failure or a computationally useful result. For
example. the expression
X<y
fails if x is not less than y, and produces y otherwise. This makes it possible to write such expressions as

fx<y<zthenz:=xelsez:=y

Failure may be used as it is in SNOBOL.4 to abort the evaluation of enclosing expressions. For example,
the function read fuils when attempting to read past the end of a file. 1f read fails during evaluation of

write(read())
the function write is not invoked, and the entire expression fails. Hence
while write(read())

copies the input file to the output file.

The expression evaluation mechanisms in both Algol-like languages and SNOBOL4 are in a sense subsets
of the Icon expression evaluation mechanism. Expressions in conventional languages such as Algol
correspond to lcon generators that produce exactly one result. Except in pattern-matching, SNOBOL4
expressions correspond to generators producing at most one result. The pattern-matching component of
SNOBOLA4 constitutes a sublanguage [6] in which some patterns function as generators during the pattern-
matching process. The patterns for ARB, BAL, and the patterns produced by BREAKX(S) {2] and P1| P2
are generators capable of producing more than one result.

3. Side effects

Some expressions are not evaluated for their results, but rather for the side effects of their evaluation. For
cxample, the function write produces its last argument as its result, but it is almost always used to produce
output to a file. Further, some operations rely upon side effects to work properly. read, for example,
advances a filc pointer each time it produces a result, so that subsequent evaluation produces a new result.

While side cffects play a very real and important role in expression evaluation, they also tend to obscure
more fundamental aspects of an expression evaluation mechanism. The notation presented in this paper is not
intended to describe side effects, but rather to describe the static aspects of expression evaluation.

4. Result Sequences

A result sequence is defined as the sequence of results that an expression is capable of producing. This sec-
tion presents a notation for result sequences and describes operations used in the manipulation of result
sequences.

The result sequence produced by the expression e is denoted by

Me) (EER PO

Il’

where s, is the i th result generated during the evaluation of e. For example, the result sequence for 1to 101s
{1.2.3,4.5.6.7.8.9, 10}

When more than one result sequence is necded, subscripts are used. For example, the result sequences for
expressions ¢ and e, are denoted by

c\(e')= lsll.s'
Se,)=1s,.8

< ~
The null sequence. {], is a sequence containing no elements and is denoted by $. Another common

sequence is { ® }, which contains the null value o, and is denoted by A.
Subsequences are denoted using subscripts and superscripts, as in
dley=1{s,...., S minty)}
If i = 1 the subsequence is abbreviated as
Sler=5(e)
If i = j the subsequence is abbreviated as

Sle)=§,(e)

The size of a sequence is the number of elements it contains.
| Me)| =n
where 0 <n =< oo,
Concatenation of sequences is denoted by

5(9,).5(0»:{.\‘“, R L IR EEREE b }

" <4 “ps

Concatenations of a sequence with itself are represented using exponential notation. For example.
Se).Se) = S(e)?
Se)de) =)™

Note that S(e)’ is not, in general, the same as &' (e).

The null sequence is the identity element with respect to concatenation of sequences:

b.Se) = e)b = Ne)

Concatenation of result sequences from a number of expressions. as in
e). He,)

is denoted by
"
It 5((")
i
The dot product of two sequences produces a sequence of pairs as defined by

e) Se,) = {(S,I..\'zl).(s,:,sz:), cee (s sy

where & = min(n.m). This may be generalized to the dot product of n sequences to produce a sequence of
n -tuples.
The cross product of two or more sequences produces a sequence of n-tuples. For example, the cross pro-
duct of two sequences produces a sequence of pairs as given by
e IxS(e,) = s, 5,5, S5) - (5,8,)
- [| [[

(v l,“‘ln)‘("lg"‘z he (3,),

2 Y cm

(s I, .szl).(sln '521)' . (S',, Sy)]

The applicarion of an arbitrary operation p to a sequence yields the concatenation of the sequences result-
ing from applying p to every element in the original sequence. Application of p to a sequence is denoted by
p::&(e), and application of p to a sequence element is denoted by p:s. That is

p:: e) = Sp:s). D(pis,) Spis,)
= = Sps,)
|

5. A Unified Syntax for Expression Evaluation

The syntax of lcon is intended to assist the user in the development of clear, understandable algorithms.
This is accomplished by providing both mnemonic forms of various control mechanisms and a concise
representation for expressions. Conciseness is gained by providing an implicit representation for the goal-
directed evaluation control mechanism. Goal-directed evaluation is such an inherent aspect of Icon expres-
sion evaluation that a visible syntax would be overbearing. The use of mnemonic forms for control mechan-
isms acts as syntactic ‘sugar’ to enhance program readability. Because this syntax is designed for program
development, itis called the ‘£-syntax. Expressions written in P-syntax are referred to as “L-expressions.

Nevertheless, when discussing the expression evaluation mechanism in Icon, these same syntactic features
serve only to obscure the underlying concepts. This section presents a description of an alternative syntax for
fcon. This syntax is intended as a descriptive device to simplify subsequent discussions of the semantics of the
Icon expression evaluation mechanism, For this reason it is calied the &-syntax. Expressions written in &-
syntax are referred to as &-expressions.

5.1 Language Primitives

Literals, identifiers, and operators constitute the language primitives in Icon. Aside from syntactic con-
siderations, there is little that distinguishes operators from function- and procedure-vaiued identifiers. The
value of an operator is the function that the operator performs. In &-syntax, operators, functions, and pro-
cedure calls all have the same syntax, and are collectively termed functions. Operators are replaced by a name
for the function that performs the indicated operation. A function is represented in &-syntax as an n -tuple,
where the first element of the n -tuple is the function, and the remaining elements are the arguments of that
function. For example, the ‘f-expressions

write("hello world")
show(x,y,z)

1+ 2

1tob

are written respectively in a LISP notational style as the &-expressions

(write, "hello world")
(show, X, vy, 2)

(add, 1, 2)

(!0, 1, 5)

The sans-serit italic font is used to distinguish actual literal functions from the names of Icon identifiers. For

example, the value of the variable write is the function write.

5.2 Contro! Regimes

Control structures in Icon are simply syntactic representations of operations in a metalanguage. These
operations are termed control regimes.

A control regime corresponds to a particular method of expression evaluation. For example, sequential
processing of expressions separated by semicolons is a control regime in which expressions are evaluated from
left to right.

The &-syntax for control regimes is
regime : arguments

where regine is the name of some control regime and arguments is a list of expressions constituting the
operands to that control regime. The names for specific control regimes are chosen to be indicative of the
corresponding control structure, and are shown here in an Old English typeface. Thus the %-expression

if e, then ¢, else e,
is represented in &-syntax as
I:e 0,0,
and the ‘L-expression
every e, do e,
has &-syntax
Luery:e.e,
Goal-directed evaluation. which has no explicit representation in ‘£-syntax, is the control regime baal in &-
syntax. Thus the “L-expression
1 to 10
has &-syntax
(haal : to, 1,10
Arguments that are omitted in “{-syntax are denoted by ¢ in the &-syntax. Hence the &-expression
Jf: €,.6,.¢
corresponds to the 9.’~expressi0n
it ¢

, then e,

Brackets are used for any necessary grouping in the &-syntax, so that the ‘“L-expression
every 1 to 10
is written in &-syntax as
Tuery : [Bonl:to.1,10].¢

and the ‘L-expression

if x >y then 1 to x
is the &-expression

3t : [Boul:greaterthan,x,y],[Geal:to.1.x],¢

6. Result Sequences for Language Primitives

6.1 Literals and Identifiers

The result sequence for a literal or identifier consists of the identifier or the value of the literal. Hence the
result sequences for of x and 3 are {x} and {3}, respectively.

6.2 Functions

Functions are evaluated by the function invocation mechanism, I'. T'is applied to a function to produce a
result sequence.

For example, the conjunction operator, &, has as its value a function conj that returns its right operand.
Conjunction is invoked as in

[(conj,x.y)
which has the result sequence {y}.

The application of I'is one step of goal-directed evaluation, and as such, has no representation in either ‘-
or &-syntax. No attempt is made here to describe the actual evaluation of functions. except to note that I" pro-
duces a (possibly empty) sequence of results from a function. For example. the result sequence for

I"(to,1,5)

{1,.2,34,5}
and the result sequence for
I: (greaterthan,3,4)
is &.

6.3 Control Regimes

A control regime takes a series of expressions as arguments and specifies the order in which these expres-
sions are evaluated. For example, one control regime may evaluate its arguments from left to right, while
another regime may use the outcome of evaluating its first argument to select another argument to evaluate.

Like primitive operations, control regimes have result sequences. However, unlike primitive operations,
control regimes deal with result sequences, not results. For example, the result sequence for

e e 1+€5

depends upon the size of the result sequence for e and determines whether the result sequence for this cxpres-
sion is the result sequence for ¢, or the one for e,

7. Result Sequences and Control Regimes

Let W represent an arbitrary control regime and ¥:S be that control regime with a list of arguments S.
The evaluation of ¥:S may be characterized by the result sequence for ¥. The result sequences for some
representative control regimes in Icon are given below,

Sequential Processing
Sequential processing, represented by the ‘£-expression

and &-expression

Beguenee 1e O, ... e

is a control regime that evaluates its arguments in order. Its result sequence is the result sequence of its last
argument. Hence

S(Sequenceie e, ..., ¢,)= e)

Goal-Directed Evaluation

The goal-directed evaluation control regime forms the cross product of the result sequences for its argu-
ments, producing a sequence composed of n-tuples. Function invocation is then applied to the elements of
that sequence to produce a result sequence. Formally,

SBual:ege, e,)=TuSe)xe)X - x(e,)

For example,
Goal : to,1.5
has the result sequence
SBoal:to,1,5) = I':{to x| 1}x{5}
=T:i(to. 1.5)}
= {I(t0.1,5})}
={1,2,3.4,5}
As another example, the -expression
3 < (1tob5)
is written in &-syntax as
HBoal : lessthan,3,[Buoal:t0,1,5]
From above,
S(Goal:lessthan.3,[Guoal:to,1,5]) = S(®ual:lessthan,3.(1.2, 5}
= I"::flessthan}x{3}x{1,2,..., 5}

= I':{(lessthan,3,1),(lessthan,3,2). (lessthan,3,5)}
={I(/essthan,3,1)}.{T":(/lessthan.3,2)}, ..., {I":(lessthan.3,5)}
= ¢, . P {4],{5]

=1{4.5}

As a final example of goal-directed evaluation, consider
(1 to 5) & x
with &-syntax

Boal : conj.[Bual:to.1.5].x

From above,
S(Goal:conj [Boal:to,1,5],x) = I'::fconjixi1,2.3,4,51x|x}
= I":{(conj,1.x),(conj.2,x),(conj,3,.x),(conj.4.x),(conj,5,Xx)}
= {I"(conj.1.x)}.{I":(conj,2.x)}.{I":(conj.3.x)}.{I(conj,4,x)}.{T":(conj.5.x}}
= [X.X. XXX}

Alternation

N

Alternation, e | e,, is the control regime Alternation that simply concatenates the result sequences for its
arguments. That is

S(Alteruationze e,) = S(e), d(e,)

If-then-else

The 3 control regime uses the size of the result sequence of its first argument to determine which of the
two remaining arguments. or arms, to evaluate. The result sequence of Jf is the result sequence of the selected
arm. That is

Sley) if Sey) = b

S(Hf:e
NMey) otherwise

0€1+€3) =

[teration

The iteration control regimes are evaluated for side effects and produce the result sequence A.
S(Bueryze | ,e,) = S(Mhileze | e,) = S(Repratie) = S(Hntilze e,) = A

None of the iteration control regimes is fundamental. The operation of any of these regimes can be
described in terms of other control regimes. These and other equivalences are described in Section 8.

Qutcome inversion

Fnvert is the outcome inversion control regime denoted by the L-expression
not e
and the &-expression
Juvert: e

The result sequence for Jnvert is

. A iTSe)y=d
O Mverte) = & otherwise

That is, the result sequence for Fuuert is empty if its argument has the null sequence. and A otherwise.

Repeated evaluation

The repeated evaluation control regime, with L-syntax
le
and &-syntax
Reual : e
has the result sequence

S(Reval:e)= &e)y

In practice, side effects are relied upon to limit the size of the result sequence for Reual. S(e)= is the infinite
series of concatenations 5(0),.5(9)3.5(6)3,...,S(c’)m. If the ith term in this cxparlsion has the result
sequence @, then evaluation of Reual terminates after evaluating the /th term. Unless &(e), is &. only side
effects can cause &e), to be ¢ for i >1.

Limitation
Limitation, with -syntax
e\ e,
and &-syntax
Eimit:?,.t’z

has the result sequence

|§(¢’:)|
~ e . ol “g]
O(Limit:e | ,e,) = = (e))
i
where S(e,) = {s,. 55 ..., s, |. Notethatif | Se,) | =1 and s, =k . then the result sequence of limitation is
- - - 1

simply a subsequence of the result sequence of e|. That s,

§(Iimit:e,,€2) =& ((")

8. Equivalences among Control Regimes
Some control regimes can be expressed in terms of others. The control regimes

(Haal
Jf
Alternation

Reval
Limit
are sufficient, in combination with the conjunction function conj, to describe a number of other control

regimes. ‘The control regimes listed above are referred to as the basic control regimes.

8.1 Supplementary Control Regimes
The following control regimes do not exist in Icon, and hence have no “£-syntax. They arc described here
to provide a convenient notational shorthand for the description of subsequent control regimes.
Limitation to Exactly One Resuit
®ue is a control regime that produces exactly onc result. ®ue: e is equivalent to
(el &nuli) \ 1
or. in &-syntax
Limit : [Alternation:e 0], |

Alternation is needed to guarantee that the result sequence for ®ue has at least one element, since (e) may be
. Limitation provides the first result from this sequence, so that

| S(Onee) | =1

Limitation to No Results

The control regime Noue always fails to produce a result. That is. the result sequence for None is

S(None) = ¢

The evaluation of Noue is equivalent to the evaluation of
Limit:e 0

where ¢ is any expression. The keyword &fail is also equivalent to Noue.

Repeated First Result
First: e is a control regime that is equivalent to the “®-expression
e\ 1)
and the &-expression
Reval : [Limitie 1]
First has a result sequence consisting of an infinite repetition of the first element in the result sequence for its
argument. That is, the result sequence for First is given by
S(Firste) = &,(e)”

subject to the same termination conventions as Reuval.

Multiple Conjunction

As stated before, the conjunction operator is a way to provide goal-directed evaluation over two expres-
sions. This generalizes to any number of expressions, but quickly becomes notationally unwieldy in &-syntax.
For example, the L-expression

e &e8e.&e,
has the equivalent the &-expression

Guaal : conj.e, [Goal:conj,e,, [Boal:conj,e e]]

JHuleonj is a control regime for expressing this type of conjunction series. For example, the above expres-
sion is denoted

HMuleonj e|.e,.,.0,

The result sequence for Mulconi is
’ n-|
I 18l
é(ﬂ{ulmui:el.ez, ceee)=0(e,) i=
"
where [] s; is the usual notation for a product of n values.
i1

8.2 Formulations for Icon Control Regimes

Sequential Processing

By definition, Sequence evaluates its arguments from left to right and has the result sequence of the last
argument. All the arguments except the last one are limited to exactly one result. Thus
S&‘qux‘u:c 1€€5, ..., €,

may be expressed as

Muleonj : [Oneze,], [Oueze,], ..., (Ouece,] e,

- 10 -

Outcome Inversion

Jwvert:e may be expressed as

e ._JXmu‘.'

Iteration
All of the iteration regimes can be expressed in terms of the basic regimes. However, the approach is sim-
plified by first expressing the iteration regimes in terms of each other.

The evaluation of Repeat only terminates because of side effects. That is.
Repeat : e
is expressible as

MWhile : [Bneze 1@

Similarly,
Tlutil €5€,
is expressed as

While : [Juvertee e,

Expressing Bhile in terms of Tuery is simplified by the use of First. That is,
Hhile: e e,
is expressed as
Every : [First:e|).e,
or

®ne : [Wuleonj : [Firstie |) [Limite,, 1], None]

Finally,
Buery: e e,
can be expressed

®ue : [Hulconjze, [Limitie,, 1], Nane]

It is interesting to note the similarity between the basic regime formulation for ile and the formulation
for Buery. The only difference between the two is that the first argument to Mhile always evaluates to its first
result.

9. Conclusion

The use of result sequences to characterize the operation of control structures leads to a better understand-
ing of the operation of Icon expression evaluation. For example, both alternation and conjunction have had
rather complex descriptions in the Icon literature, despite the fact that result sequences show both to be simple
operations.

Result sequences also suggest several additional control regimes to provide increased flexibility in the use
of generators. While not implemented in Version 4, they suggest possibilities for further experimentation.

Alternation and Conjunction

Alternation traditionally has a rather complex cxplanation. For example, the Version 3 reference
manual [1] has the following explanation:

-1l -

The most fundamental generator is alternation
exprl | expr2

This expression first evaluates expr/. If expr/ succeeds. its result becomes the result of the alternation expression. If expr/ fails,
however, the outcome of the alternation expression is the outcome of evaluating expr2. For example,

(i=p1G-=K
suceeeds il iis equal tojor il s equal o k

Alternation has an important additional property. 1 expr! succeeds, but the expression in which the altemation occurs
would fail, the alternation operator then evaluates expr2. For example,

x - (1] 3)
succeeds if x is equal to [or 3.
This explanation is not only involved, it is inaccurate! Let
®re e,
be the &-expression for the alternation operation as described above. The result sequence for ®r is
S(®re.e,) =S (e)).3(e,)

That is, only the first result from e is ever used from its result sequence. This is not how alternation works.
As shown carlier, alternation simply concatenates the result scquences for its arguments. so that all of the
results are accessible by a surrounding expression. Finally, note that the explanation given in the Version 3
manual does not describe what happens if expr2 succeeds, but the surrounding expression fails.

®r may be constructed from the basic control regimes as
Alteruation : [Limite.1].e,

Another interesting form of alternation is *normal” alternation as found in SUMMER [10]. and described
as “forward" alternation by Doyle [3]). This form of alternation is equivalent to the -expression
(e, e\ 1
and the &-expression
Limit ; [‘Alh‘nmﬁun:el,ez], |

which produccs at most one result,

Several mysterious properties have been ascribed to conjunction. As recently as the Version 2 reference
manual [5]. it was considered to have special properties with respect to goal-directed evaluation. However,
conjunction is the simplest of all binary operators, merely returning its right operand [4]. The “mysterious
properties™ are shown in Section 7 to be the normal operation of goal-directed evaluation, independent of the
conjunction operation,

Possible Extensions to Icon

Generating expressions provide a notationally concise form for expressing a great deal of computational
power. However, their use is often hampered by the lack of sufficient “generator-based” control regimes. For
example. the expression

every f(lalist)
invokes f on cvery element of alist, but to invoke f on just the even indexed elements, or on the tenth through
twentieth elements, requires a radically different expression.

Result sequences have suggested a number of interesting control regimes that provide additional control
over generators. This section describes several of these control regimes and presents possible £-syntax forms
for these regimes.

The control regime Subscquence with P-syntax

e\ [ezze_,]

-12-

and &-syntax
Subsequence e .0,.¢4
has a result sequence that is a subsequence of the result sequence for its first argument. For example,
5(§ulmrqumcr:el.5. 10)= 55“,(6")
Note that Subseyuence is o generalization of Liwit. That is,
Limit : e,.¢, = Subsequence i e, Le,
For convenience. the “-expression
¢, \ [¢,:0]
is the &-expression
Subsequence : ¢ .¢,,%
so that
(1 to 10) \ [7:0]
has the result sequence {7, 8, 9. 10). Finally,
every f(lalist \ [10:20])
invokes f on the tenth through twentieth elements of alist.
A generalization of Subsequence is Netusequenee with P-syntax
e\ ¢,
and &-syntax
Netusequenee @ ¢

,
1°¢2

The result sequence for Newsequence consists of elements of the result sequence for e as specificd by the
clements of the result sequence for ¢,. Formally,
S Nefusequenceie | e,) = Svl(t’l),cs‘:(('l). ce s 8-‘.,, (e))
where S(e,)={s .5, 5, | consists of integers in strictly increasing order.
For example, the Y-cxpression
¢, \\ (e, t0 ;)
is same as
e\ [eyey]
except when the result of e is 0.
As a final example,
every f(lalist \\ (2 to =alist by 2))
invokes f on the even-indexed elements of alist.
One of the difficulties in controlling generators in Icon is that there is no mechanism for limiting the result

sequences for individual operations without also limiting the arguments to that operation. For example, con-
sider the following ‘L-expression

every find("icon”, line := 1&input) do write(line)

which outputs any input line containing the string icon. However, if an input line contains more than one
occurrence of icon, that line is output more than one time. The problem is that the result sequence for
find (s1, s2) contains the locations of all occurrences of s1in s2.

-13-

Attempting to limit find to at most one result in the above example also limits !&input to at most one
result. Thus,

every find("icon”, line = |&input) \ 1 do write(line)
outputs only the first line containing icon.

One solution to this problem would be an alternative form of function invocation that permits limitation
of specific operations, without limiting the arguments. l.et T denote this alternative function invocation
mechanism, with the following relationship to I":

T:function = Limit:[I": functrion],1
That is, T produces at most one result from the invocation of a function.

T may be applied during goal-directed evaluation in place of I" to limit a particular operation without lim-
iting the arguments to that operation.

An operation that is to be invoked with T instead of I'is “tagged™ in “L-syntax with a grave accent (). For
example, the following L-expression outputs cvery input line that contains the string icon, with no line being
output more than once.

every ~ find("icon”, line := !&input) do write(line)

Acknowledgement

I am indebted to Cary Coutant, Ralph Griswold, Dave Hanson, and Tim Korb for their discussions and
criticisms. Cary Coutant provided invaluable assistance with the implementation of the new Version 4
features.

-14 -

References

I

o

Coutant, Cary A., Ralph E. Griswold, and Stephen B. Wampler. Reference Manual for the lcon Pro-
gramming Language; Version 3. Technical Report TR 80-2, Department of Computer Science. The
University of Arizona. May 1980.

Dewar, Robert B. K. SPITBOI. Version 2.0. Technical Report S4D23, Hlinois Institute of Technology.
February 1971,

Doyle, John D. 4 Generalized Facility for the Analvsis and Synthesis of Strings, and a Procedure-Based
Model of an Implementation. Technical Report S4D48, Department of Computer Science, The Univer-
sity of Arizona. February 1975.

Griswold, Ralph E. Expression Evaluation in Icon. Technical Report TR 80-21, Department of Com-
puter Science, The University of Arizona. August 1980.

Griswold, Ralph E. and David R. Hanson. Reference Manual for the Icon Programming lLanguage;
Version 2. Technical Report TR 79-1a, Department of Computer Science, The University of Arizona.
January 1980.

Griswold, Ralph E., and David R. Hanson. “An Atlternative to the Use of Patterns in String Process-
ing”, ACM Transactions on Programming Languages and Systems, Vol. 2, No. 2 (Aprii 1980). pp. 153-
172.

Griswold, Ralph E., David R. Hanson. and John T. Korb. “The Icon Programming Language, An
Overview™, SIGPLAN Notices, Vol. 14, No. 4 (April 1979). pp. 18-31.

Griswold, Ralph E.. David R. Hanson, and John T. Korb. “Generators in Icon”, 4 CM Transactions on
Programming Languages and Systems, To appear in April, 1981.

Griswold, Ralph E., James F. Poage, and Ivan P. Polonsky. 7The SNOBOIL4 Programming Language.
Scecond Edition. Prentice-Hall, Inc. Englewood Cliffs, New Jersey. 1971,

Klint, P. *An Overview of the SUMMIR Programming Language™, Conf. Rec., 7th Annual ACM
Symp. on Principles of Programming Languages. Las Vegas, Nevada (January 1980). pp 47-55.

Korb. John T. The Design and Implemeniation of a Goal-Directed Programming Language. Technical
Report TR 79-11, Department of Computer Science, The University of Arizona. June 1979.

Wampler, Stephen B. New Control Structures in Icon. Technical Report 81-1, Department of Computer
Science, The University of Arizona. January 1981,

- 15 -

Appendix - Version 4 of the Icon Programming l.anguage

Version 4 Icon is an extension of Version 3 incorporating some novel control mechanisms that exploit gen-
erators. In addition to these new control mechanisms, Version 4 differs from Version 3 in several aspects.
This appendix briefly describes those differences that are pertinent to this paper. A morc complete discussion
may be found in [12].

I. The places in which generators are limited 1o at most one result have been significantly reduced in Version
4. For example, the arms ol the if-then-else control structure are no longer limited to one result. Thus

every write (if x < y then 1 to x else 1 to y)

outputs 1, 2,. ... min(X.y)in Version 4, rather than simply 1, as in Version 3.

2. Braces in Version 3 serve to both group expressions and to limit generators. In Version 4, braces serve
only to group expressions and do not limit generators.

3. The lone suffix operation in Version 3, fails, has been replaced with the prefix control structure not. to
help relieve the confusion caused by having a suffix operation.

4. Thercis a new keyword, &fail, whose evaluation always fails.
The size of an objcct is computed with the size operator, *x, rather than the function, size(x).

6. random(i) has been replaced by the random sequence operator, ?x. ?x is an infinite generator that pro-
duces random elements from x. [f X is an integer greater than 0, then integers between ! and X are pro-
duced. 7?0 produces real values between 0.0 and 1.0,

7. repeate is now an infinite loop. The only way to terminate evaluation of repeat is with break.

8. The control structure
e\ e,
fimits the evaluation of ¢ to at most e, results. For example,
every writes(?7100 \ 3)

outputs three random integers between | and 100.

9. Version 4 provides a control structure for constructing generators at the expression level. This control
structure, termed repeated evaluation, is

e
and repeatedly evaluates e . For example,
every writes(|(1 to 3))
outputs the infinite sequence

123123123...

Repeated cvaluation terminates if an evaluation of e fails to produce any result. Each time 1 to 3 is
evaluated in the above example, it produces at least one result (three results, in fact). so that evaluation of
[(1 to 3)
produces an infinite sequence of results. However,
(1 = 0)
terminates immediately, and
|read()

terminates when read tails.

17-

