Transporting the Icon Programming Language*
Version 2.0

Ralph E. Griswold, David R. Hanson,
and Stephen B. Wampler

TR 79-2b

March 1979
Revised June 1979 and February 1980

Department of Computer Science
The University of Arizona

*This work was supported by the National Science Foundation under Grants MCS78-02545 and MCS79-
03890.

Transporting the Icon Programming Language

1. Overview

Most of the lcon programming language is implemented in Ratfor [1]. a preprocessor that
generates Fortran code. As a result, implementing Icon on a new computer is largely a matter of
compiling all the Ratfor code locally.

There are two components of the Icon system — a translator and a runtime system. The translator
converts lcon procedures into Fortran subroutines. These subroutines contain calls to runtime
routines that are executed to carry out the operations specified in the Icon program. The
subroutines that are produced by the translator are then compiled by a standard Fortran compiler
and the result is linked with the runtime system and executed.

There are a few machine-dependent parameters in Ratfor include files that must be set for yvour
computer. You must also write a few machine-dependent routines that cannot be written in a
machine-independent way in Ratfor. Depending on your local character set, you may have to build
a modified version of the Ratfor input/output system to accomodate Icon’s internal character set. In
addition. you may have to modify the main programs for the Icon translator and runtime system.

The remainder of this report describes the process of transporting Icon in more detail.

2. Distribution Material

The distribution material for the portable Icon system consists of 4 magnetic tape and a number
of documents.

The recording format of the distribution tape is described on a label on the tape reel. The tape
contains the following files:

rdearc: Ratfor routine for separating archive files

fdearc: Fortran routine for separating archive files

includ: include files for the Icon translator and runtime system
trans: Ratfor routines for the Icon translator

runt: Ratfor routines for the Icon runtime system

mdepen: test programs for the machine-dependent routines
itest: lcon test programs

idata: data for the Icon test programs

ftest: generated Fortran for the Icon test programs

10. iresul: results of running the Icon test programs

Il. rtest: Icon programs in limited character set

12. ebcdic: block data Ratfor routine for EBCDIC character set mapping
13. xref: reference information

WX NN R W~

The names of the files are used for reference in this document and are not on the tape itself. All
files except rdearc and fdearc are in an archive format [1], with headers separating sections (the
alternative would have been to distribute a tape containing hundreds of files). You therefore will
have to separate the files as appropriate for your local installation. To help in separating the archive
files. rdearc and fdearc contain prototype routines that can serve as a basis for a program to do the
separation. rdearc is written in Ratfor and fdearc is the equivalent Fortran routine. These routines
are only prototypes — you will have to modify them to suit you local system. The header names in
the archive files correspond to file names used at our installation. In some cases, such as for include
files, the header names correspond to files explicitly referenced in routines. In other cases. they serve
only as mnemonic guides.

There are five routines (ESCAPE. FTOC. ITOC. LENGTH. and PUTLIN) that are common to the
translator and the runtime system. These are included in both trans and runt for convenience. in
case you wish to keep the two components of the system separate.

The reference material in xref supplements the material given in the appendices of this document.
You may find some of this material useful in building tools to help in the installation process.

The documents included with the distribution are:

directory of the distribution tape

transporting instructions (TR 79-2b. this document)
machine-dependent components of the DEC-10 and CDC implementations
fcon implementation notes (TR 79-12a)

description of the Icon storage management system (TR 78-16a)
installation instructions for the DEC-10 implementation of Icon
installation instructions for the CDC implementation of Icon
lcon reference manual (TR 79-14)

summary of the differences between Versions | and 2 of lcon
user's guide for the DEC-10 implementation of lcon

user's guide for the CDC implementation of lcon

SO XNT R LD —

The reference manual is copyrighted. Permission to reproduce this manual for vour local use is
granted in the covering letter for the distribution material. The other documents are not
copyrighted and yvou may reproduce them f{reely. '

The user’s guides for the DEC-10 and CDC implementations of Icon are included as models for
documentation that you may wish 1o provide for the users of your implementation. The installation
instructions for the DEC-10 and CDC implementations are included because they contain examples
of how other implementations are organized and how machine-dependent problems have been
handled elsewhere,

3. Potential Problems

Before undertaking the implementation of lcon on your computer. you should determine the
feasibility of the implementation. Problems are most likelv to arise in the following areas:

capacity limitations

software inadequacies

hardware properties

operational and organizational limitations

P S

3.1 Capacity Problems

The onc factor that is most likely to make the implementation of lcon impractical or even
unfeasible is limited memory capacity. Icon is a large system and cannot be easily adapted to runin a
small amount of memory. Memory requirements can be estimated from the amount of memory
used in existing implementations: some figures are given in Appendix A. In interpreting these
figures keep two points in mind: (1) lcon data layouts are based on Fortran integers. and (2) these
are implementations for which no attempt was made to minimize memory usage. Note also that the
amount of memory required to construct components of lcon may be larger than the amount of
memory needed to run them, '

Since various internal tables. data layouts. and source-language objects are composed of Fortran
integers. the amount of space for data scales down for machines with small word sizes. The amount
of space required for executable code may not scale down correspondingly.

In situations where the amount of available memory is marginal. various internal tables and
buffers can be reduced in size. Such reductions may restrict the class of Icon programs that can be
run and may also reduce running speed because of increased overhead for storage mandgemem A
list of places where reductions may be made is given in Appendix B.

A more extreme approach is to subset the lcon system by removing language features. Since the
Icon system is highly modularized. this can be done by eliminating parts of the runtime system on a
per-routine basis. Appendix C contains a list of features that can be removed without substantially
diminishing the usefulness of the language. If Icon is subsetted in this fashion, the translator will still
accept the deleted features, but their use will cause unresolved references when the resulting Fortran
program is linked with the runtime system. This problem should be tolerated; we do not advise
modifving the translator.

3.2 Software Inadequacies

In the software area. a decent Fortran 1V compiler is essential.

There are four areas in Icon translator and runtime system in which Fortran may cause problems:

inability to compile large routines

inability to handle a large number of common blocks

inability to handle Fortran constructions used in the coding of Icon
unavailability of intrinsic Fortran routines

B

There are two very large routines in the translator: CODGEN and PARSE. If these routines
exceed the capacity of vour Fortran compiler. there is no easy solution.

Icon uses several named common blocks. 8 in the translator and 13 in the runtime system. See
Appendix D, Blank commeon is used for the main memory array in the include file CMEM. I yvour
Fortran compiler cannot handle these common blocks, vou can combine or revise them (we know of
no name collisions, but this is & possible problem). Combining the common blocks is a substantial
undertaking. since almost all the Ratfor routines will require editing.

Several Fortran constructions used in the coding of Icon are bevond the official ANSI standard.
However. they fall within the common de facto implementation standard. These include:

[. usc of arbitrary expressions (but not function calls) in array subscripts and computed gotos
2. passing arguments that are variables in a labeled common of the subroutine being called
3. passing the same variable as two different arguments

Problems with Fortran in an Icon translator or runtime routine usually can be solved my making
appropriate changes to the Ratfor code or to the corresponding Fortran code for the routine.
Problems with Fortran in the code generated by the Icon translator are likely to be more difficult 1o
fix. since it may be necessary to change the logic of the translator. With two exceptions, the Fortran
code generated by the Icon translator conforms to the Fortran standard as embodied’in the PFORT
verifier [4].

The most serious exception occurs in the initialization of arravs. It is assumed that arrays can be
initialized by data statements of the form

data a /value of a(1), value of a(2), ..., value of a(N)/
or. if the arrayv is large. by data statements of the form

data (a(i).i=1,100) /value of a(1), ..., value of a(100)/
data (a(i),i=101,200) /value of a(101), ..., value of a(200)/
data (a(i),i=201,N) /value of a(201), ..., value of a(N)/

The ANSI standard form requires explicit specification of each element of the array. i.e.

data a(1) /value of a(1)/
data a({2) /value of a(2)/

data a(N) /value of a(N)/

If the form of the data statements causes problems. it can be changed by modifying the translator
routine outds. which is called to output most data statements. Exceptions are the array r, which is
output in outhdr. and field offset arrays. which are described below.

The second exception concerns the use of block data subprograms. If records are used in an Icon
program. arravs containing field offsets are generated and placed the labeled common cflds. A
block data subprogram is generated that initializes these arrays. The problem is that. in this case.
there are two block data subprograms: the one that initializes cflds and one that initializes other
runtime data used by every lcon program. Having more than one block data subprogram is contrary
to the ANSI standard and may cause problems. 1f so, the offset arrays can be made local to each
Fortran procedure (corresponding to each Icon procedure) by modifying the translator routine
outfld. This routine is called to output the common statement in each subroutine and may be
modified to output the data statements in place of the common statement. Note that the arrays are
output directly by outfld: outds is not called. Thus, if the form of data statement mentioned above
causes problems, outfld will nced to be modified.

In addition. the translator does not provide range checks on the integer variables of the computed
gotos that it gencrates. In theory. such values should always be in range. However. if an out-of-
range value should occur, the source of the error may be difficult to locate, since such a branch is not
defined in the ANSI standard.

If the translator generates more statement continuations in DATA statements than vour Fortran
compiler allows, reduce the define constant CUTOFF in the translator include file TDEF. (This
constant specifies the number of elements, not the number of lines.)

If vour Fortran compiler does not support all of the intrinsic routines used by lcon (see Appendix
E). this will probably show up as a linking error. All the intrinsic functions used by Icon are simple.
and vou easily can provide local assembly language routines for them. EXTERNAL declarations
may be necessary.

Your linker loader must be able to handle a large number of routines and must be able to resolve
a large number of references. It is useful. but not necessary. for the linker, loader to be capable of
searching a library. This capability allows loading only those runtime routines needed by a
particular lcon program. thus generally reducing runtime memory requirements. A complete list of
Ratfor routines is given in Appendix F.

3.3 Hardware and Architectural Problems

If your computer has a small word size. you may have some problems. For the Icon programmer.
integer arithmetic may be uncomfortably limited in range.

The Icon system presently assumes that Fortran real numbers occupy the same amount of space.
and have the same alignment, as Fortran integers. I these assumptions are not valid. various
malfunctions may occur when real arithmetic is performed in an lcon program. There is no easy
solution to this problem at the moment. although we are working on one for future versions.

3.4 Operational Problems

The overall size of the lcon system, its complexity, and extensive modularization may present
significant problems in some environments. Unless you have a large amount of disk space and a
good file system. the implementation of Icon may be very difficult in practice, even if all other
resources are adequate. 1t is worth spending some time in planning the procedures that you will use
for assembling, modifving. and maintaining the system.

4. The Transporting Process
We suggest implementing lcon in the following steps:

implement and test Ratfor

make a version of the Ratfor input/output library for Icon
set machine-dependent parameters

implement and test the machine-dependent Icon routines
build and test the translator

build the lcon runtime system

build the runtime library

test the entire lcon system

XN E W~

4.1 Implementing Ratfor

The implementation of Ratfor is essentially a separate process. The version of Ratfor that is used
for the implementation of Icon must support the return statement and the string declaration. The
size of its define table. given by the constant MAXTBL, must be at least 6100. If you do not already
have a suitable version of Ratfor. you may obtain one from

David R. Hanson

Department of Computer Science
University Computer Center
Tucson. Arizona 85721 USA
Telephone: (602)-626-3617

In addition to the Ratfor preprocessor. the Ratfor input/output system is used extensively by
Icon and must work properly. We recommend that the Fortran version of the input,/output system
be used initially, although the improvement in performance obtainable through use of machine-
dependent input: output routines may dictate a change to machine-dependent routines at a fairly
early stage.

4.2 Revising the Ratfor Input/QOutput System

The Ratfor input output system needed to support lcon must accomodate Icon’s internal
character set. The size of Icon’s internal character set is 256. of which the first 128 characters
correspond to ASCII [2). Appendix G contains a list of ASC!I codes and graphics. The remaining
128 characters are available to the Icon programmer and may be used for a variety of purposes. The
size and interpretation of the internal character set is independent of the external character set of
your computer. Since the Ratfor input;output system is based on ASCII. the only problem that
may be encountered is in dealing with the extra 128 characters in Icon’s internal character set. It is
generally possible to configure the Ratfor input output system to work for Icon as well as for Ratfor
programs. The following paragraphs describe character mappings in more detail.

The translation between your external character set and the internal one is done in the Ratfor
input; output system. In the basic Ratfor sysiem, translation between your character set and the
internal character set is done by a table lookup in INTCHR and EXTCHR. This lookup is based on
the interpretation of Fortran literals on your computer and supports a natural interpretation of the
96-character graphic subset of ASCIl. As described in the Ratfor installation instructions. you
should replace these functions by arrays that index codes according to your character set. Select a
mapping that is appropriate to lcon’ concept of its internal character set and its relation to vour
computer. Note that Ratfor stores characters unpacked as Fortran integers, so the size of Icon’s
internal character set is not a problem.

For computers for which ASCI1 is the natural character set. the translation is trivial. On input.
map characters directly into their internal code. On output, map characters in the first half of the
internal character set directly. but fold characters in second half to corresponding positions in the
first half by ignoring the high-order bit. (This treatment of the upper half of the character set is not
essential, but it is reasonably natural and is used in existing ASCII implementations of lcon.)

For charuacter sets that are smaller than ASCI!, use a natural mapping on input. Where there arc
common graphics. map the external characters into the ASCII codes for those graphics (note that
this may produce an internal collating sequence that is different from the normal collating sequence
on vour computer). Sce the CDC installation guide for an example.

Since Icon relies on ASCII codes. failure to preserve graphic correspondences may cause the
malfunction of lcon programs. Some source-language features. such as &lcase and &ucase. are
particularly sensitive to this problem. On output. perform the inverse mapping for the internal
characters that correspond to external ones. For internal characters that do not have external
correspondences. provide reasonable mappings. For example, if your character set is BCD, map
internal lower-case characters into upper-case characters on output.

For the EBCDIC character set [3]). a recommended mapping is given in a Ratfor block data
routine ebcdic on the distribution tape. This mapping is |-to-1, so that external data can be
processed without loss of information. In addition, ASCII codes have been selected to correspond.
where possible, to the graphics on the IBM extended TN print train [3]. Where no graphic
correspondence or equivalent interpretation exists. codes have been selected to preserve the inverse
property.

For character sets other than those listed above, the same general guidelines follow. For example.
if lcon is to be implemented on a computer with a character set size larger than 256. the input must
be folded.

4.3 Machine-Dependent Parameters

There are a number of machine-dependent parameters that you need to set according to the
architectural characteristics of your computer. These parameters appear near the beginning of the
include files TDEF and IDEF and are clearly marked. The values of the parameters in the files as
distributed are those for the DEC-10. For reference. listings of the DEC-10 and CDC parameters
are included in the distribution documentation.

Examine these parameters carefully and change them to values appropriate to your computer.
Failure 10 set these parameters correctly may produce catastrophic results.

4.4 Machine-Dependent Routines

The eight machine-dependent routines needed to supplement the Ratfor component of Icon are
described in Appendix H. For reference, listings of the DEC-10 and CDC implementations of these
routines are included in the distribution documentation. The first five routines (LLC. LDC. STC.
SETB. and TSTB) manipulate characters and bits. The proper functioning of these routines is
essential. A stand-alone test program for these routines is included in mdepen on the distribution
tape. Note that you must set machine-dependent parameters in this test program. The other three
routines (SYSERR. RUNTIM, and DATE4) interface the operating system. Thev may be
implemented by dummy routines as an initial stop-gap measure.

4.5 lcon Translator

The Ratfor component of the lcon translator is trans on the distribution tape. Appendix F
contains a directory of these routines.

You may need to modify the translator's main routine, TMAIN, to redirect program listings (see
TRNLAT). You may also need to open files or connect standard input and output according to the
conventions of your Fortran compiler and operating system. To change the heading produced for
program listings. modify PUTLIST. If vou encounter problems in processing the translator Ratfor
routines through vour version of Ratfor, there is probably a problem with Ratfor itself. Trouble
encountered in compiling the resulting Fortran code may come from several sources. See Section 3.2
for a list of the most likely problems.

Once the Ratfor routines for the translator are successfully compiled. link them with the Ratfor
input. output system and the machine-dependent routines. Problems during linking may again
come from a variety of sources. Unresolved references may indicate use of intrinsic Fortran routines
that are not available locally. If you have an extended Ratfor input/output system. you may have
routines with the same names as those in the translator or in the machine-dependent routines. Delete
or override any such routines in vour Ratfor input/output system.

Run the translator on the lcon test programs contained in itest on the distribution tape. If you
have a limited character set or restricted input;output devices, you may wish to use use rtest, which
uses an approximation to the PL/I character set, rather than itest. which uses full ASCII.

The output of the translator, a subroutine named ICON. should be syntactically correct (but
highly stvlized) Fortran code. If the translator malfunctions, the most likely source of error is in the
machine-dependent routines that vou supplied locally. Compare the Fortran code generated by
vour translator with the Fortran code in ftest on the distribution tape. There should not be any
differences unless you change the text of the test programs (see Section 4.8).

4.6 Runtime System

The Ratfor component of the runtime system is given in runt on the distribution tape. A directory
of these routines is contained in Appendix F.

You may need to modify the runtime system main routine. RMAIN. in the same manner as the
translator main routine.

Compile the Ratfor routines for the runtime system. The same kinds of problems may arise here
that may arise in the translator.

4.7 Runtime Library

Combine the runtime routines with the Ratfor input‘output system and the machine-dependent
routines to form a library. Be sure to delete or override any routines in your Ratfor input, output
system whose names are the same as those in the runtime system or machine-dependent routines.
Link this library with the result of translating an Icon program. As a first step, the entire runtime
system should be included. although reduced memory utilization may be obtained by searching the
library of runtime routines to link only those required by a particular program (see Section §). For
some systems, the library may have to be topologically sorted. A list of the runtime routines in
topological order is contained in xref on the distribution tape.

4.8 Testing the Entire Icon System

Test the entire lcon system beginning with the first test program. If all goes well, test the more
complicated programs. The first five test programs are self contained and require no data. The
remaining programs require data contained in idata on the distribution tape. Appendix | contains a
list of the test programs and data. When comparing the results of running the test programs with
the results given in iresul, allow for differences that may result from different character sets or
different listing formats. For example, the program wordt behaves differently when processing all
upper-case data than when processing upper- and lower-case data. Thus itest and rtest give
dirrerent results in some cases. Note that the test programs do not exercise all the features of fcon. A
more comprechensive set of tests in being developed.

There are several possible sources of error that may be in the Icon system itself rather than in your
implementation. Unless an error is obviously of such a nature, local implementation problems
should be suspected. since Icon has been in use for over two years at the University of Arizona.
However. “intrinsic™ errors are certainly possible. For example, we may have overlooked a machine
dependency. There are also certainly some errors in the logic of the Icon system. Such errors.
however. probably will not appear in running the test programs. since these programs are known to
run satisfactorily on the two implementations mentioned above.

S. Improving the Implementation

The most dramatic improvement in the performance of lcon can be obtained by replacing Fortran
components of the Ratfor input, output system by locally tailored machine-dependent routines. In
lact. you probably will have to do some work in this area to obtain tolerable running speeds.
Information on this is contained in our Ratfor distribution material.

If your linker loader has a good library search capability, you may be able to reduce the memory
requirements for running Icon programs by linking only those runtime routines that are actually
referenced by the Fortran program produced by the translator. Caution is advised here: the time
required to search the runtime library may be unacceptably large.

A more drastic approach to improving the performance of lcon is to replace Ratfor routines by
corresponding assembly-language routines. The best candidates for this kind of improvement are
those that are fairly simple. but used frequently. Performance measurements of lcon indicate that
the prime candidates for replacement are the routines MVC and MVW.

Warning: do not attempt to improve the Fortran code by use of LOGICAL *1; the results will be
catastrophic.

6. Extending the Language

The way lcon is implemented makes extensions difficult. However, we have made a provision for the
inclusion of locally supplied functions that may be useful for such purposes as interfacing vour
operating system.

The translator recognizes ZZ0. 2Z1.2ZZ9 as the names of built-in functions. Runtime
routines for these functions are not included in the Icon system: however they may be provided
locully. Appendix J contains an example of such a routine.

Any extension of a nontrivial nature requires considerable knowledge of the internal workings of
Icon. Documentation of the implementation of Icon is included in the distribution package.

7. Inaccessible Code

There is some performance measurement code in the lcon system that is inaccessible unless
modifications are make to allow users to set switches when Icon is run. This code may also contain
machine dependencies. Although this code adds somewhat to the size of the Icon system. it was not
removed from the portable system because to have done so would have been a substantial
undertaking and might have introduced errors.

8. Feedback, Maintenance, and Updates

It will be very helpful. especially to other implementors. to have your comments. criticisms. and
reports of problems at the earliest possible time.

As described in the covering letter for the distribution package, you may access our computer
svstem to communicate with us directly through our messageé facility. 1f you do not use our
computer system. send information to

Ralph E. Griswold

Department of Computer Science
University Computer Center

The University of Arizona
Tucson. Arizona 85721 USA
Telephone: (602)-626-1829

As troubles are discovered. we will distribute information and additional documentation
automatically. If vou access our computer system. this information will be available when vou log
in. Otherwise, we will mail it to you.

We will distribute minor updates to program material in whatever form seems most appropriate.
We will distribute major updates in the form of a new distribution tape. For this reason. vou should
keep carcful records of any changes yvou make, especially to any Ratfor routines in the machine-
independent portion of the system. We recommend that you use some uniquely identifiable
commenting convention for changes that you make locally.

Acknowledgement

Tim Korb played a major role in the design and execution of the implementation of lcon. Cary
Coutant has assisted with the preparation of the system for transporting. The experience of installers
of earlier versions of this system has resulted in a number of improvements contained in the current
system. Special thanks are due to Wiliam H. Mitchell. Christopher St. James, and Michael D.
Shapiro.

References

I. Kernighan, Brian W. and P. J. Plauger. Sofiware Tools. Addison-Wesley. Reading.
Massachusetts. 1976,

2. American National Standards Institute. USA Standard Code for Information Exchange. X3.4-
1977. New York, New York. 1977,

3. IBM Corporation. Systen/370 Reference Summary. Form GX20-1850-3. White Plains, New
York. 1976.

4. Rvder, B. G. Software — Practice and Experience. Vol. 4. No. 4 (December 1974). pp. 359-377.

Appendix A—Space Requirements

The space used by two implementations of Icon for two test programs is shown below. The
program hello is trivial: the program rsg is moderately large and uses many of the features of Icon.
The figures are approximate.

hello rsg
kilowords megabits kilowords megabits

DEC-10

translation 333 1.2 33.3 1.2

compilation 26.2 1.0 28.2 1.1

linking 379 1.4 39.9 1.5

execution' 33.3 1.2 36.9 1.3

execution? 23.6 0.8 31.8 1.1
CDC Cyber /6000

translation » 23.9 1.4 23.9 1.4

compilation 21.5 1.3 21.5 1.3

linking 16.4 1.0 25.6 1.5

execution? 17.3 1.0 23.1 1.4

linking entire runtime library
3earching runtime library

Appendix B—Parameter Settings

The following parameters may be lowered to reduce memory requirements or raised to increase
the capacity of the Icon system. The minimum values given are our recommendations. Lower
vilues may be used. but the result may be unsatisfactory.

Translator (TDEF)

parameter current minimum affected property

MAXHEAP 1500 1000 translator work area
MAXSTACK 300 200 translator stack size
MAXGBLS 100 50 number of global symbols
MAXREALS 100 10 number of real numbers
MAXINTGS 100 50 number of integer literals
MAXSTRGS 500 100 number of string literals
MAXPROCS ’ 1000 80 size of procedure area
MAXSYMTB 2000 1000 symbol table size
MAXRECDS 200 50 number of record types
MAXLEVEL 8 0 number of levels of includes
MAXLABELS 1024 256 number of local labels in a procedurc

Runtime S_&'slcm (IDEF)

MEMSIZE 15000 4000 dynamic memory space

STRSIZE 1000 500 string storage region size!
SQLSIZE 200 10 string qualifier storage region size!
INTSIZE 200 10 integer storage region size!
HEPSIZE 4000 500 heap storage region size!

STKSIZE 200 50 stack size!

CSTACKSIZE 500 300 control stack size!

"The sum of these values must not exceed MEMSIZE. These are initial values: they are automatically adjusted during
execution and the regions expand as necded.

Appendix C—Subsetting Suggestions

Some features of lcon may be removed because thev can be easily written in Icon itsell or because
they are not essential for most programs. Subsectting is somewhat a matter of taste. Our suggestions
follow. In some cases. such as for stack functions. features should be removed or rctained as a
group.

Routine to Remove

Features Easily Written in Icon

center(s1,i,s2) XCENT
left(s1,i,s2) XLEFT
mod(i,j} XMOD
numeric(x) XNUMR
pop(k) XPOPS
pos(i,s} XPUSHS
push(k,x) XPUSHS
randoml(i) XRAND
repl(s,i} XREPL
reverse(s) XREV
section(s,i,j) XSECT
top(k) XTOPS
=S XTABM
¢l -- ¢c2 XDIFF
cl ** c2 XINTER

Inessential Features

copy(x) XCOPY
display(i) XDiSP
trim(s,c) XTRIM

X =y XSWAP
X lel- XRSWAP
|

i XPOWER

Appendix D—include files

The include files are separated into definition files and common blocks.

Definition Files

ADEF ASCII character mnemonics

CDEF definitions common to PARSE and CODGEN
IDEF runtime svstem definitions

KDEF kevword token definitions

LDEF lexical definitions

ODEF token definitions for OPCODE

PDEF label definitions for PARSE

SOEF symbol table ficld defintions

TDEF translator definitions

Common Blocks

CCODE generated code information

CCSTK control stack common

CFOLD cquivalence map for translator folding
CGC girbage collector common

CINTP interpreter common

CIO input output common for runtime system
CLAB global labels for translator

CLEX global variables for lexical analyzer
CMAIN interface 1o generated Fortran code
CMEM lcon memory common

CPARM runtime parameters

CSIZES initial sizes for storage region

CSTAT common for storage management statistics
CSYM symbol table structure for translator
CTEND variables tended by garbage collector
CTIO input output common for translator
CTRANS global variables for translator

CUTIL utility common

CXMAP character map table
CXSORT field offset for sorting

Appendix E—Intrinsic Fortran Functions Used by lcon Ratfor Routines

ABS(real). returning the absolute value of real.

[

IABS(integer). returning the absolute value of inreger.

‘w

FLOAT(inreger). returning real equivalent of inzeger.

4. 'FIX(real). returning the largest integer less than or equal to the absolute value of rea/ and with the
sign of real.

5. AMOD(reall,real?). returning the real remainder of dividing reall by real?.

6. MOD(integerl,integer2). returning the integer remainder of dividing integer! by integer2.
7. MAXO(integerl,integer2). returning the larger of inregerl and integer2.

K. MINo(inlegerli.im(’ger_?). returning the smaller of integer!l and inieger?2.

Lists of routines in which Fortran intrinsic functions are used are included in xref on the
distribution tape.

Appendix F—Directory of Ratfor Routines

Translator Ratfor Routines

ALCLAB allocate label
ALCNOD allocate parser node

BADERR issuc fatal error and terminate

BIFNC identify built-in function

BIOPR identifyv built-in operator

CODGEN generate code from parse tree for procedure

CTOF convert character to reul

CTOlI convert character to integer

CVARG add argument conversion nodes for buili-in function
CVNMX add numeric conversion nodes for exponentiation

CVNUMR analyse mixed-mode arithmetic expression
CVSTRG add string conversion nodes

DEFLT default parse tree for argument of built-in function
DEFTYP default argument for built-in function

DOGLOB parse global declaration

DOINCL increment include level and open include file
DORECD parse record declaration

ENTDCL enter explicit scope declarations

ENTDEF enter undeclared identifier
ENTDYN enter dynamic identifier

ENTER enter identifier into symbol table
ENTGBL enter global identifier

ENTLCL enter local identifier

ENTPAR enter procedure parameters

ENTPRO enter procedure

ENTSV enter static identifier

ESCAPE interpret literal escape conventions
FINDP find procedure

FNARG tyvpe or default for argument of buili-in function
FNFAIL check failability of function or keyword
ENTYP tvpe of function or kevword

FORLAB allocate Fortran label

FTOC real to character conversion

GENER distinguish generators

GETALF get alphanumeric token
GETKEY get kevword token
GETLIN get line

GETNUM get numeric token
GETOPR get operator token
GETSTR get string literal
GETTOK get token

IGNORE determine token to ignore in event code
INOPR determine if token is possible infix operator
INSERT insert string into symbol table

ITOC integer to character conversion

KEYTYP determine type ol kevword

KEYWRD identify kevword

LENGTH compute length of string

LEX1 get token during pass 1

LEX2 gct token during pass 2

LOKFLD look up identifier in record definition table

LOKGBL look up pointer in global table

LOKLCL look up pointer in local table

LOKREC look up name in record table

LOKSTR look up string

NGETC get character

NODE1 allocate parse node with | field

NODE3 allocate parse node with 3 fields

NODE4 allocate parse node with 4 fields

NODES allocate parse node with § fields

NODE®6 allocate parse node with 6 fields

NODE7 allocate parse node with 7 fields

NODES8 allocate parse node with 8 fields

OPCHR determine operator character

OPCODE print subroutine call for operation
OPRVAL determine value of operator during pass |
OPTYP determine type of operator during pass |
OUTCH output character

OUTDON finish output line

ouTDS output data statement for array

OUTFLD output field offset array declaration and initialization
OUTHDR output heading for generated Fortran program
OUTMSG output message

OUTNUM output number to generated Fortran code
OUTTAB position Fortran code after column 6
OUTTOK output token to scratch file

PARSE create parse tree

PASS1 pass | of translation

PBSTR push string back onto input

POP pop value from translator stack
POP2 pop two values from translator stack
POP3 pop three values from translator stack
POP4 pop four values from translator stack
PRINTX formatted output to generated Fortran code
PUSH push value on translator stack
PUSH2 push two values on translator stack
PUSH3 push three values on translator stack
PUSH4 push four value on translator stack

PUTBAK push character back onto input
PUTINT output decimal number
PUTLIN write string to file

PUTLST start listing file

RCTOI convert string to integer
RESERV identify reserved word
RESGBL resolve global references
SCNSYM scan for identifiers

SEARCH search table for name

SPANB span stream of blanks

SYNERR issue syntax error message
TDATA translator data

TERMIN determine terminating token
TINIT initialize translator

TMAIN translator main program

TRNLAT translate lcon program

Directory of Runtime Ratfor Routines

ABUMP
ADJUST
ALCBLK
ALCINT
ALCSQOL
ALCSTR
BAL
CMPFLD
CMPSQOL
COMPAR
CTOS
DHEAP
DTTYPE
DUPL
ERROR
ESCAPE
EXCHAN
EXPAND
FCLOSE
FIND
FOPEN
FTOC
GCHEAP
GCINT
GCsaL
GCSTK
GCSTR
HASH
IDATA
IINIT
IMAGE
INTMRK
ITOC
LENGTH
LXCMP
MARK
MvC
MvVw
PIMAGE
POSF
PRINTF
PUTLIN
QSORT
RDPTR
RMAIN
SAVE
SCHECK
SINIT
SIZE
SQLMRK
STKCHK
STOC
SWEEP
TYPE

increment allocation count

adjust pointer for sweep

allocate block from heap

allocate integer

allocate qualifier

allocate space for string

find balanced string for bal{c1,c2,c3,s,i.j)
compare fields of two structures for gsort
compare qualifiers for gsort

compare source objects

convert character buffer 10 Icon string
print dump of heap

type of lcon object

duplicate string

error termination

interpret literal escape conventions
exchange values

expand storage region

close file

find substring for find(s1,s2,i.j)

open file

real to character conversion

garbage collect heap

garbage collect integer region
garbage collect qualifier region
garbage collect heap for stack room
garbage collect string region

compute hash number
initialization data

initialize storage

construct print image

mark accessible integers

integer to character conversion
compute length of string

lexical comparison of strings

mark accessible blocks

move characters

move words

print image

convert to positive position specification
formatted print

write string to file

SOTL array

redirect pointer for sweep

runtime main program

save section of stack on control stack
check and dump storage statistics
initialize symbol and literal tables
size of block

mark qualifier as accessible

check free space on stack

convert lcon string to character string
process all pointers in storage areas
determine type of source object

TYPEV
UNESC
UPTO
XACC
XADD
XANY
XASG
XBAL
XBANG
XCAT
XCCSET
XCENT
XCFILE
XCINTG
XCLOSE
XCMmP
XCNUMR
XCOomMP
XCOPY
XCPROC
XCREAL
XCSET
XCSTAK
XCSTRG
XDEREF
XDIFF
XDISP
XDV
XDRIVE
XDbup
XECASE
XEVERY
XFACC
XFIND
XGLOBL
XIMAGE
XINTER
XINTG
XINVOK
XKEYWD
XLCMP
XLEFT
XLLIST
XLOCAL
XLPBEG
XLPEND
XMANY
XMAP
XMARK
XMATCH
XMLIST
XMOD
XMOVE
XMRECD
XMSTAK
XMTABL
XMUL

determine type of object on stack
escape sequence for character
find character for upto{(c,s.i.j)
structure access

i+

any(c,s.i.))

X =y

bal(c1,c2,c3,s.i,j)

Ix

s1 || s2

implicit conversion to cset
center(s1,i,s2)

implicit conversion to file
implicit conversion to integer
close(x)

general comparison

implicit conversion to numeric
compare literal

copy(x)

implicit conversion to procedure
implicit conversion to real
cset(s)

implicit conversion to stack
implicit conversion to string
dereference argument

cl -- ¢c2

display{i)

i/

drive expression to success
duplicate top item on stack
check case expression failure
save stack data for every loop
access field of record
find(s1.s2,i.j)

push global variable
image(x)

csl ** cs2

integer(x)

imvoke procedure

return kevword

lexical comparison
left(s1,i,s2)

<x1,x2, ..., xn>

push local variable

enter loop

exit loop

many(c,s.i,j)

map(s1,s2,s3)

mark stack heights and set failure
match(s1,s2.i,j)

list{i)

modi,j)

move(i)

construct record

stack(i)

table(i)

(IR

XNCMP
XNEG
XNEXT
XNOTC
XNULL
XNUMR
XOPEN
XPACS
XPBCS
XPBLK
XPINTG
XPLPCS
XPNCS
XPNULL
XPONE
XPOP
XPOPS
XPOS
XPOWER
XPREAL
XPRPCS
XPSTRG
XPUSHS
XPZERO
XRAND
XRASG
XREAD
XREAL
XREPL
XRESET
XRETRN
XREV
XRIGHT
XRSWAP
XSCN1
XSCN2
XSECT
XSIZE
XSORT
XSREAD
XSTOP
XSTRG
XSuB
XSUBST
XSUSP
XSWAP
XSWRIT
XTAB
XTABM
XTINVK
XTO
XTOBY
XTOPS
XTREF
XTRETN
XTRIM
XTYPE
XUNION
XUPTO
XWRITE

numeric comparison

-i

next iteration of loop

“c

check null

numeric(x)

open(x,s)

push &ascii onto stack
push cset(”) onto stack
push blank onto stack
push integer onto stack
push cset(”("”) onto stack
push cset(&null} onto stack
push &null onto stack
push | onto stack

pop argument off stack
pop(k)

pos(i,s)

P

push real number onto stack
push cset(”)”) onto stack
push string onto stack
push(k,x)

push 0 onto stack
random(i)

X <=V

read(f)

real(x)

repl(s,i}

reset procedure entry point
return from procedure
reverse(s)

right(s1,i,s2)

X <-> v

set up for string scanning
restore scanning environment
section(s,i,j)

size(x)

sort(x)

reads(f,i)

stop(s)

string(x)

i-

substr{s.i,j)

suspend procedure

X =y

writes(f,s1, ..., sn)

tab(i)

=s

trace procedure invocation
ito]

ito by k

top(k)

table reference

trace return from procedure
trim(s.c)

type(x)

cl ++ c2

upto(c,s.i.j)

write{f,s1, ..., sn)

pos.

ghhhhwwuuwwwuwgnunnunnnnnd_......_..._._.‘
WN =20 WO YOIO L WN — CONDINDBDWN—20OVOINAINDBDWN OO NOIE WA =

DD D> nna . n b
BWwRNIZTLRLLRLLnL2E2R80

octal

000
001

002

003
004

005
006
007
010
o

012
013
014
015
016
017
020
o1

022
023
024
026
026
027
030
31

032
033
034
35
036
037
040
041
042
043
044
045
046
047
050
051

052

graphic

space

TR

O’ T A L we—

MV OATT

Appendix G—The ASCII Character Set

ASCI kevhourd sey.

control shift P
controf A
control
control
control
control
controf
control
control
control
control
control
control
control
control
control O
control P
control Q
control R
control S
control T
control U
contro! V
control W
control X
control Y
control 2
control shift K
control shift L
control shift M
control shift N
control shift O

ZIrXCeTIoOomMmMmoO®

- X

o ——

O XAty — D

SIVEIY Gt

function

nut!

bell

horizontal tab
line feed
vertical tab
form feed
carriage return

escape

105

107
108
109
10
11
112
113
14
115
116
17
118
119
120
21
122
123
124
125
126
127
128

octul

100
101

102

103
104
105
106
107
10
i

n2
13
114
1s
116
nz
120
121

122
123
124
125
126
127
130
31

132
133
134
136
136
137
140
141
142
143
144
145
146
147
150
151

152
153
154
155
156
157
160
161

162
163
164
165
166
167
170
171
172
173
174
175
176
177

graphic

T/ TNXXSKCHMDINDVOZIMFrAC"IOMMOOT PR

'~—-~<xs<:—m~n‘oo:3-*"Jo‘mo.ﬂo'm

21

ASCIL hevbonrd seq. functior

@
shift A
shift B
shift C
shift D
shift €
shift F
shift G
shift H
shift |
shift J
shift K
shift L
shift M
shift N
shift O
shift P
shift Q
shift R
shift S
shitt T
shift U
shift V
shift W
shift X
shift Y
shift 2
[

\

i

,—_“'N<x§<c—dmxo‘uozgl-xt_—xmmmonm),

rub out delete

(S8
(3]

Appendix H—Machine-Dependent Routines

The following Fortran-callable routines are machine-dependent and must be provided locally.
PASCAL type notation is used to indicate types. The type char indicates a Fortran integer whose
value is interpreted as a Icon internal character. The type address indicates a Fortran integer array
that is overlaid on other data such as a Fortran literal. The type boolean indicates a Fortran integer
whose value is 0 or I,

I. Hc(c:char,a:array,i:integer):.char — get the ith character character (zero-based) from the
Fortran string literal at address a and return its ASCII code in ¢ and as the function value. The
value of i may be arbitrarily large (beyond the integer at a), but the Icon system assures that it is in
the range of the literal. This routine has the sole responsibility of converting characters in Fortran
literals into ASCII codes.

2. Idc(c:char,a:array,i:integer).char — get the ith character (zero-based) from the lcon string
starting at address a and return it in ¢ and as the function value. The value of i may be arbitrarily
large (beyond the range of the integer at a). but the Icon system assures that it is in range of the
string.

3. stc(c:char,a:address,i:integer):char — store character ¢ at character location i (zero-based)
from address a. :

The routines Idc and stc are solely responsible for the movement of characters in Icon’s internal
character set. These characters always have 8 significant bits, regardless of the external character
set. These routines embody the knowledge of the layout of characters within a Fortran integer. The
machine-dependent parameter CHARSPERWORD in TDEF and IDEF must be set appropriately. It
is nor necessary that characters be stored in any particular format. For example, you may find it
convenient not to use all the bits of vour Fortran integer for storing characters if your word size is
not evenly divisible by 8. For example, if the size of your Fortran integer is divisible by 9. vou may
wish to use 9 bits per character. ignoring the high-order bit. You should pack characters. however.
10 conserve storage space (i.e.. it is not advisable to store only one character per Fortran integer).

4. tstb(a:address,i:integer);boolean — return the ith bit (zero-based) from address a. In this
routine and the three routines that follow, the value of i may be arbitrarily large (bevond the integer
at a). The value of bit i is not changed.

5. setb(a:address,i:integer);boolean — set the ith bit (zero-based) from address a to | and return
the previous setting of this bit.

The two routines tstb and setb are solely responsible for the manipulation of bits in Fortran
integers. The machine-dependent parameter WORDSIZE in TDEF and IDEF must be set
appropriately. You do not need to actually use all the bits in you machine’s word. but WORDSIZE
must indicate how many bits are used and the routines above must correctly access the bits that are
used.

6. syserr{s:string) — print the Fortran literal string s and terminate execution. The message
should indicate that an error has occurred in the Icon system and the message should be printed to
the user’s standard output in a manner that is independent of Ratfor input/output. The strings is
alwavs terminated by a period.

7. runtim():integer — return elapsed CPU runtime for the Icon job in milliseconds. The lcon
svstem expects a value measured from the beginning of execution and computes differences as
necessary. This routine should nor reset the time.

8. dated(date,year,time,secs:integer) — return date. year. time of day. and elasped seconds in
date. year. time. and sec. respectively. The date is an integer in the form mmdd. For example.
April I is 40]1. The vear is a four-digit integer. The time is the current time of day in the form
hhmm. For example. five minutes after noon is 1205. The seconds is an integer giving the elapsed
seconds in the current minute (wall-clock time).

program

hello
fib
comprs
scan
bridge
kross
morsec
wordt
recogn
graphm
deriv
rsg

data

none
none
none
none
none
groups
poem
prog
senten
graphs
dexp
gramm

Appendix 1—Icon Test Programs

function

trivial test

test of recursion and generators
test of scanning

display of scanning

dealing bridge hands

word intersections

Morse code translation
word tabulation

sentence recognition

gruph manipulation
symbolic differentiation
random sentence generation

25

Appendix J—An Example of a ZZ Routine

include idef
##zz1(lab,n:integer) -- returns command line argument or fails (see Software Tools book).
stable.
#
n is number of arguments
lab is used for generators and is not relevant here
sp is the stack pointer; arguments consist of two words and are pushed on the stack,
which grows downward
signal indicates success or failure
#
subroutine zz1(lab, n)
integer lab, n
pointer ctos, p
integer getarg
include cutil
include cmain
include cmem

if (n < 1)
signal = O # must have at least 1 argument
else {
sp=sp+ 2%n -~ 1) # remove trailing arguments
call xderef # get the value of the argument
call xcintg # make sure it's integer
if (getargimem(mem(sp)), cbuf, MAXCHARS) "= EOF) {
p = ctos{cbuf) # getarg puts argument into cbuf, make
mem(sp) = p # it an Icon string and return it
else
signal = O # argument not there
!
return

end

