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B Useful in visualizing hierarchical models and relationships

» Many natural examples
¢ Polygon hierarchy
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Motivation — Level Planarity

B Useful in visualizing hierarchical models and relationships
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B Useful in visualizing hierarchical models and relationships
» Many natural examples

¢ UML class diagram of the Java Collection
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» Many natural examples
» Any directed acyclic graph (DAG) can be visualized as a hierarchy

B Applications within graph drawing
» Traditional — Sugiyama'’s algorithm
¢ Draws DAG’s in a top-down manner
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B Useful in visualizing hierarchical models and relationships
» Many natural examples

» Any directed acyclic graph (DAG) can be visualized as a hierarchy
B Applications within graph drawing
» Traditional — Sugiyama'’s algorithm
¢ —> Desire to use minimum the number of levels

» Nontraditional — simultaneous embedding
¢ Number of levels equal number of vertices




B Useful in visualizing hierarchical models and relationships
» Many natural examples

» Any directed acyclic graph (DAG) can be visualized as a hierarchy
B Applications within graph drawing
» Traditional — Sugiyama'’s algorithm
¢ —> Desire to use minimum the number of levels

» Nontraditional — simultaneous embedding
¢ = Uses maximum the number of levels
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m Graph G(V, E) is planar if and only if
» (5 can be drawn in the plane without crossings
¢ Edges can have bends or only be straight-line edges
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m Graph G(V, E) is planar if and only if
» Equivalently by Kuratowski’'s Theorem
¢ (G contains no homeomorphic copy of K5 or K3 3

B Similar forbidden subdivision characterization for ULP graphs
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¢ Assigns exactly one vertex per level
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B Ann-level graph G(V, E, ¢)
> Has n vertices with a bijective leveling ¢ : V' — [1..n]
> Edges are y-monotone

B ( is level planar if

» (5 can be drawn without crossings AND each vertex remains on its level




B Only some planar graphs are level planar over every bijective leveling
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B Only some planar graphs are level planar over every bijective leveling




B Only some planar graphs are level planar over every bijective leveling

» Such graphs are called Unlabeled Level Planar (ULP)
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B Embedding multiple planar graphs on the same vertex set




B Embedding multiple planar graphs on the same vertex set
» Generalizes the notion of planarity
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B Embedding multiple planar graphs on the same vertex set
» Related to geometric thickness
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B Embedding multiple planar graphs on the same vertex set
» Desire straight-line edges and each layer is planar

B Simultaneously embed monotone path with any ULP graph
» Mapping between vertices is given by labeling




B Embedding multiple planar graphs on the same vertex set
» Desire straight-line edges and each layer is planar

B Simultaneously embed monotone path with any ULP graph
» Ordering of the vertices in path gives a leveling
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B Embedding multiple planar graphs on the same vertex set
» Desire straight-line edges and each layer is planar

B Simultaneously embed monotone path with any ULP graph
» Graphs overlaid so that vertices with same label have same position




B Embedding multiple planar graphs on the same vertex set
» Desire straight-line edges and each layer is planar

B Simultaneously embed monotone path with any ULP graph
» Has to work for any of the n! labelings between graphs
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B O(n) time algorithms for level graphs

» Jlnger, Leipert, and Mutzel gave a level planarity testing algorithm in 1998
¢ Uses P(Q)-trees




] O(n) time algorithms for level graphs
» Jlnger, Leipert, and Mutzel gave a level planarity testing algorithm in 1998

» Jinger and Leipert achieved level planar embedding in 1999
¢ A level embedding is the left-to-right ordering of vertices along a level
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Junger, Leipert, and Mutzel gave a level planarity testing algorithm in 1998

Jinger and Leipert achieved level planar embedding in 1999

Eades, Feng, Lin, and Nagamochi devised a straight-line level planar drawing

algorithm given an embedding in 1997

¢ Shows any level planar graph drawn with bends can be drawn with
straight-line edges instead
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] O(n) time algorithms for level graphs
» Jlnger, Leipert, and Mutzel gave a level planarity testing algorithm in 1998

» Jinger and Leipert achieved level planar embedding in 1999

» Eades, Feng, Lin, and Nagamochi devised a straight-line level planar drawing

algorithm given an embedding in 1997

B Characterizations of level graphs
» Di Battista and Nardelli characterized hierarchies in 1988

» Healy, Kuusik, and Leipert found minimal LNP subgraph patterns in 2000
¢ Incomplete — do not match all forbidden ULP graphs
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B Characterization of ULP trees by two forbidden subdivisions
» Tree I3 with 8 vertices and two nodes of degree 3 m
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B Characterization of ULP trees by two forbidden subdivisions

» Tree I with 8 vertices and two nodes of degree 3
» Tree 1q with 9 vertices and one node of degree 4
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B Characterization of ULP graphs by 7 forbidden subdivisions
» Graph (&5 with 5 vertices and three nodes of degree 4 @
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B Characterization of ULP graphs by 7 forbidden subdivisions
» Graph (5 with 6 vertices and two nodes of degree 3
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B Characterization of ULP graphs by 7 forbidden subdivisions
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» Finally describe how all trees either
¢ Contain a subdivision of 15 or Ty orR
¢ Are one of the three ULP trees
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> ¢(a) < o(d) < ¢(c) < o(b) < ¢(e)

(d) @%fd\
AR T Ve ~ 11
B NN

B c cannot be leftmost or rightmost without forcing a crossing
» Can use this property to prove 15 and 1y are not ULP
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m Let () be the chain a—b—c—d—e
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Lemma 1 Any tree containing a subdivision of / g cannot be ULP.
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m Let (' be the chain a—b—c—d—e
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Lemma 2 Any tree containing /9 cannot be ULP.
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B A minimal lobster argument gives the next theorem:

Theorem 6 Every tree either contains a subdivision of I g or g in which

case it is not ULP, or it is a caterpillar, a radius-2 star, or a degree-3 spider
In which case it is ULP.




B A minimal lobster argument gives the next theorem:

Theorem 6 Every tree either contains a subdivision of I g or g in which

case it is not ULP, or it is a caterpillar, a radius-2 star, or a degree-3 spider
In which case it is ULP.

B Proof idea:
» A tree that is not a caterpillar has a minimal lobster 7+~
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Theorem 6 Every tree either contains a subdivision of I g or g in which

case it is not ULP, or it is a caterpillar, a radius-2 star, or a degree-3 spider
In which case it is ULP.

B Proof idea:

» A tree that is not a degree-3 spider or radius-2 star has two cases
¢ Has at least two vertices of degree-3
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B A minimal lobster argument gives the next theorem:

Theorem 6 Every tree either contains a subdivision of I g or g in which

case it is not ULP, or it is a caterpillar, a radius-2 star, or a degree-3 spider
In which case it is ULP.

B Proof idea:

» A tree that is not a degree-3 spider or radius-2 star has two cases
¢ Has at least two vertices of degree-3 — contains g subdivision
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B A minimal lobster argument gives the next theorem:

Theorem 6 Every tree either contains a subdivision of I g or g in which

case it is not ULP, or it is a caterpillar, a radius-2 star, or a degree-3 spider
In which case it is ULP.

B Proof idea:

» A tree that is not a degree-3 spider or radius-2 star has two cases
¢ Has at least one vertex of degree-4
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B A minimal lobster argument gives the next theorem:

Theorem 6 Every tree either contains a subdivision of I g or g in which

case it is not ULP, or it is a caterpillar, a radius-2 star, or a degree-3 spider
In which case it is ULP.

B Proof idea:

» A tree that is not a degree-3 spider or radius-2 star has two cases
¢ Has at least one vertex of degree-4 — contains 7y
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» First showed 75 and g are not ULP
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» Showed caterpillars, radius-2 stars and degree-3 spiders are ULP
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» Last showed all trees fall into one the above categories




B Background
B Unlabeled Level Planar Trees

B Unlabeled Level Planar Graphs

Generalized

2-Connected
Extended
Degree-3
Spiders




B Background
B Unlabeled Level Planar Trees

B Unlabeled Level Planar Graphs
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2-Connected
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» First show forbidden graphs are not ULP
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B Unlabeled Level Planar Trees

B Unlabeled Level Planar Graphs

Generalized

2-Connected
Extended
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Spiders

» Then extend drawing for ULP graphs with cycles
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B Unlabeled Level Planar Graphs

Generalized

2-Connected
Extended
Degree-3
Spiders

» Finally describe how all graphs fall into one of the above categories
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m For each ULP graph let C be the chain a—b—c—d—e
> o(a) < o(d) < olc) < ¢(b) < </5(€)

N W o Ot

» Use similar arguments as with /g and g




m For each ULP graph let C be the chain a—b—c—d—e
> o(a) < o(d) < olc) < ¢(b) < </5(€)

N W o Ot

» Implies one of the other edges must cross '




m For each ULP graph let C be the chain a—b—c—d—e
> o(a) < o(d) < olc) < ¢(b) < </5(€)

N W o Ot

Lemma 7 Any graph with a cycle containing a subdivision of G5, G,
G, G, or G5 cannot be ULP.
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Lemma 10 A planar drawing of an n-vertex 1-connected extended
degree-3 spider G(V/, ) can be drawn in O(n) time on an n X n grid for

any vertex labeling ¢ : V LN {1, 2, ..., n} with one bend per edge.
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Lemma 10 A planar drawing of an n-vertex 1-connected extended

degree-3 spider G(V/, ) can be drawn in O(n) time on an n X n grid for

any vertex labeling ¢ : V LN {1, 2, ..., n} with one bend per edge.

onto

B Proof idea:
» Modify degree-3 spider algorithm, same invariants

» Break large cycle so one endpoint is extreme

» Getting degree-3 spider started is more involved
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Lemma 10 A planar drawing of an n-vertex 1-connected extended

degree-3 spider G(V/, ) can be drawn in O(n) time on an n X n grid for
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onto

» In the first case red path is first drawn to its maximum
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m Drawing a 1-connected extended degree-3 spider:
Lemma 10 A planar drawing of an n-vertex 1-connected extended
degree-3 spider G(V/, ) can be drawn in O(n) time on an n X n grid for

any vertex labeling ¢ : V LN {1, 2, ..., n} with one bend per edge.

onto

» In the second case blue path is drawn first
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m Drawing a 1-connected extended degree-3 spider:
Lemma 10 A planar drawing of an n-vertex 1-connected extended
degree-3 spider G(V/, ) can be drawn in O(n) time on an n X n grid for

any vertex labeling ¢ : V LN {1, 2, ..., n} with one bend per edge.

onto

» Then the red path is drawn next




m Drawing a 1-connected extended degree-3 spider:
Lemma 10 A planar drawing of an n-vertex 1-connected extended

degree-3 spider G(V/, ) can be drawn in O(n) time on an n X n grid for

any vertex labeling ¢ : V LN {1, 2, ..., n} with one bend per edge.

onto

» Whereas in the first case the blue path comes second




m Drawing a 1-connected extended degree-3 spider:
Lemma 10 A planar drawing of an n-vertex 1-connected extended
degree-3 spider G(V/, ) can be drawn in O(n) time on an n X n grid for

any vertex labeling ¢ : V LN {1, 2, ..., n} with one bend per edge.
onto
| |
® ® ®
3 © 3

» Then the green paths are drawn to their minimum
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m Drawing a 1-connected extended degree-3 spider:
Lemma 10 A planar drawing of an n-vertex 1-connected extended
degree-3 spider G(V/, ) can be drawn in O(n) time on an n X n grid for

any vertex labeling ¢ : V LN {1, 2, ..., n} with one bend per edge.
onto
| |

h e hi 4

\ '@ . /

\

\

3 © 3

» Can then accommodate the extra edge




m Drawing a 1-connected extended degree-3 spider:
Lemma 10 A planar drawing of an n-vertex 1-connected extended
degree-3 spider G(V/, ) can be drawn in O(n) time on an n X n grid for

any vertex labeling ¢ : V LN {1, 2, ..., n} with one bend per edge.

onto

© |

o

©

» Can then accommodate the extra edge




m Drawing a 1-connected extended degree-3 spider:
Lemma 10 A planar drawing of an n-vertex 1-connected extended
degree-3 spider G(V/, ) can be drawn in O(n) time on an n X n grid for

any vertex labeling ¢ : V LN {1, 2, ..., n} with one bend per edge.

onto

© |

o

©

© ©

0 0

» Can then accommodate the extra edge




m Drawing a 1-connected extended degree-3 spider:
Lemma 10 A planar drawing of an n-vertex 1-connected extended
degree-3 spider G(V/, ) can be drawn in O(n) time on an n X n grid for

any vertex labeling ¢ : V LN {1, 2, ..., n} with one bend per edge.
onto
® | ® © |
o\ ® ¢
\ ¢
\

» Can then accommodate the extra edge

o

o




m Drawing a 1-connected extended degree-3 spider:
Lemma 10 A planar drawing of an n-vertex 1-connected extended
degree-3 spider G(V/, ) can be drawn in O(n) time on an n X n grid for

any vertex labeling ¢ : V LN {1, 2, ..., n} with one bend per edge.
onto
¢ ® O
o\ ® ¢
\ ¢
\

&

ﬂ

o

» Can then accommodate the extra edge

o




B Proof by induction gives the next theorem:

Theorem 11 Every graph either contains one of the seven forbidden

graphs in which case it is not ULP, or it is a generalized caterpillar, a

radius-2 star, or a extended degree-3 spider in which case it is ULP.




B Proof by induction gives the next theorem:

Theorem 11 Every graph either contains one of the seven forbidden
graphs in which case it is not ULP, or it is a generalized caterpillar, a
radius-2 star, or a extended degree-3 spider in which case it is ULP.

B Proof idea:
» Assume graph with n edges is ULP
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B Proof by induction gives the next theorem:

Theorem 11 Every graph either contains one of the seven forbidden
graphs in which case it is not ULP, or it is a generalized caterpillar, a
radius-2 star, or a extended degree-3 spider in which case it is ULP.

B Proof idea:
» Consider all possible ways of adding an extra edge
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B Proof by induction gives the next theorem:

Theorem 11 Every graph either contains one of the seven forbidden
graphs in which case it is not ULP, or it is a generalized caterpillar, a

radius-2 star, or a extended degree-3 spider in which case it is ULP.

B Proof idea:
» Either two possibilities
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B Proof by induction gives the next theorem:

Theorem 11 Every graph either contains one of the seven forbidden
graphs in which case it is not ULP, or it is a generalized caterpillar, a

radius-2 star, or a extended degree-3 spider in which case it is ULP.

B Proof idea:
» Either two possibilities
¢ Graph remains ULP
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B Proof by induction gives the next theorem:

Theorem 11 Every graph either contains one of the seven forbidden
graphs in which case it is not ULP, or it is a generalized caterpillar, a

radius-2 star, or a extended degree-3 spider in which case it is ULP.

B Proof idea:
» Either two possibilities
4 OR
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B Proof by induction gives the next theorem:

Theorem 11 Every graph either contains one of the seven forbidden
graphs in which case it is not ULP, or it is a generalized caterpillar, a

radius-2 star, or a extended degree-3 spider in which case it is ULP.

B Proof idea:

» Either two possibilities
¢ Graph now contains one of the forbidden graphs — (G in this case
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B Background
B Unlabeled Level Planar Trees

Caterpillars

oo, oo, oo
voe voe

.
Degree-3
spiders

» Previous results for trees




B Background
B Unlabeled Level Planar Trees
B Unlabeled Level Planar Graphs

Generalized
Caterpillars

2-Connected
Extended
Degree-3
Spiders

» New results for all graphs




B Provide recognition algorithm for all ULP graphs




B Provide recognition algorithm for all ULP graphs
B Provide certificate of unlabeled level non-planarity




B Provide recognition algorithm for all ULP graphs

B Provide certificate of unlabeled level non-planarity
» l.e., find a copy of a forbidden ULP graph
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