

Characterization of Unlabeled Level Planar Trees

Alejandro Estrella-Balderrama, J. Joseph Fowler, and Stephen G. Kobourov

Department of Computer Science, The University of Arizona

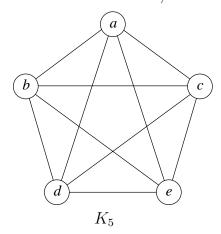
The 14th International Symposium on Graph Drawing (GD 2006)

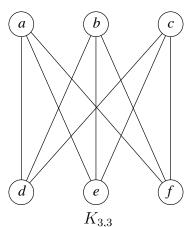
lacksquare A graph G(V,E) is *planar* if and only if

- lacksquare A graph G(V,E) is *planar* if and only if
 - ightharpoonup G can be drawn in the plane without crossings

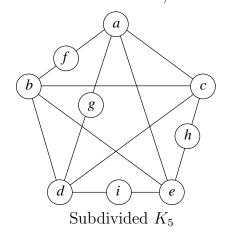
- lacksquare A graph G(V,E) is *planar* if and only if
 - ightharpoonup G can be drawn in the plane without crossings
 - Edges can have curves or only be straight-line edges
 - lacktriangle Equivalent in that if a drawing of G with curved edges exist, then so does a straight-line drawing of G exists

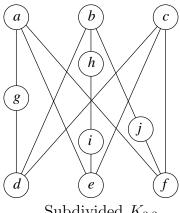
- lacksquare A graph G(V,E) is *planar* if and only if
 - ightharpoonup G can be drawn in the plane without crossings
 - ♦ Edges can have curves or only be straight-line edges
 - lacktriangle Equivalent in that if a drawing of G with curved edges exist, then so does a straight-line drawing of G exists
 - lacktriangle Contains no copy of K_5 or $K_{3,3}$ —Kuratowski's Theorem





- \blacksquare A graph G(V,E) is *planar* if and only if
 - ightharpoonup G can be drawn in the plane without crossings
 - Edges can have curves or only be straight-line edges
 - lacktriangle Equivalent in that if a drawing of G with curved edges exist, then so does a straight-line drawing of G exists
 - ightharpoonup Contains no copy of K_5 or $K_{3,3}$ —Kuratowski's Theorem

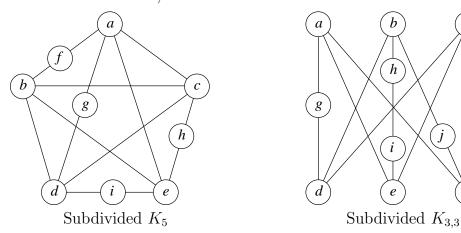




Subdivided $K_{3,3}$

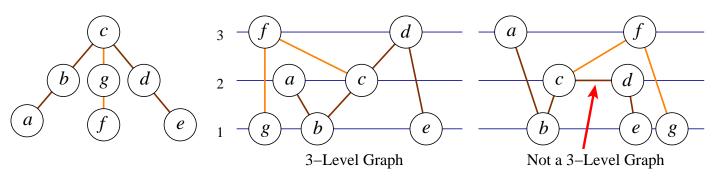
lacktriangle I.e., G does not contain a subgraph that is a subdivision of K_5 or $K_{3,3}$

- lacksquare A graph G(V,E) is *planar* if and only if
 - ightharpoonup G can be drawn in the plane without crossings
 - ♦ Edges can have curves or only be straight-line edges
 - lackloais Equivalent in that if a drawing of G with curved edges exist, then so does a straight-line drawing of G exists
 - lacktriangle Contains no copy of K_5 or $K_{3,3}$ —Kuratowski's Theorem

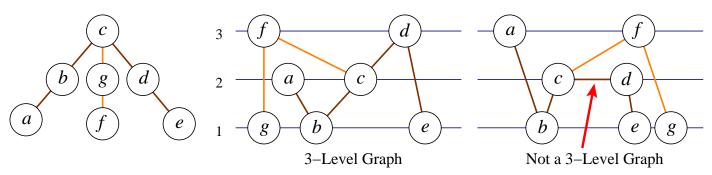


- lacktriangle I.e., G does not contain a subgraph that is a subdivision of K_5 or $K_{3,3}$
- Have developed similar forbidden subdivision characterization for ULP trees

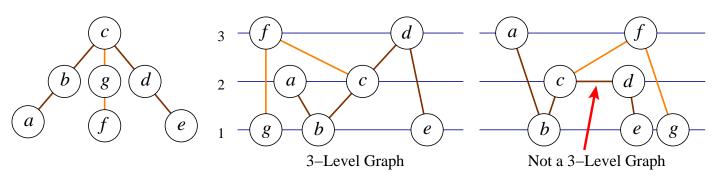




- lacksquare A k-level graph $G(V, E, \phi)$
 - ightharpoonup Has n vertices where $n \ge k$
 - Edges are drawn with straight-line segments
 - ▶ Has a *level assignment* $\phi: V \rightarrow [1..k]$
 - lack Assigns each vertex to one of k equidistant horizontal levels
 - ♦ Cannot have an edge between two vertices on same level
 - I.e., $(u,v) \in E \Rightarrow \phi(u) \neq \phi(v)$



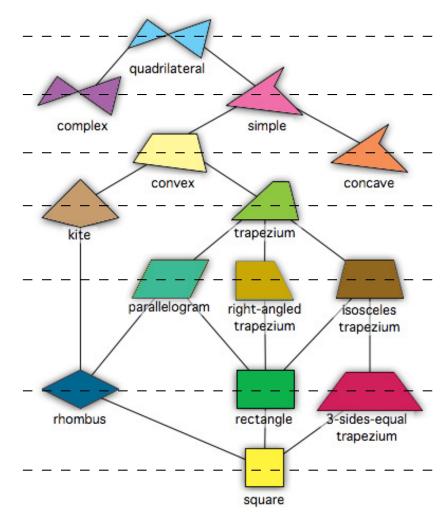
- \blacksquare A k-level graph $G(V, E, \phi)$
 - ightharpoonup Has n vertices where $n \ge k$
 - Edges are drawn with straight-line segments
 - ▶ Has a *level assignment* $\phi: V \rightarrow [1..k]$
 - lack Assigns each vertex to one of k equidistant horizontal levels
 - ♦ Cannot have an edge between two vertices on same level
 - I.e., $(u,v) \in E \Rightarrow \phi(u) \neq \phi(v)$
 - ls $\mathit{level\ planar}$ if there exists a plane drawing of G provided the y-coordinate of each $v\in V$ is $\phi(v)$
 - ♦ Placement of each vertex is restricted to its assigned level



- lacksquare A k-level graph $G(V, E, \phi)$
 - ightharpoonup Has n vertices where $n \ge k$
 - Edges are drawn with straight-line segments
 - ▶ Has a level assignment $\phi: V \rightarrow [1..k]$
 - lack Assigns each vertex to one of k equidistant horizontal levels
 - ♦ Cannot have an edge between two vertices on same level
 - I.e., $(u,v) \in E \Rightarrow \phi(u) \neq \phi(v)$
 - ls $\mathit{level\ planar}$ if there exists a plane drawing of G provided the y-coordinate of each $v\in V$ is $\phi(v)$
 - Placement of each vertex is restricted to its assigned level
 - lacktriangle Such a plane drawing forms a *realization* of G

Useful in visualizing hierarchical models and relationships

- Useful in visualizing hierarchical models and relationships
 - Many natural examples of hierarchies



- Useful in visualizing hierarchical models and relationships
 - Many natural examples of hierarchies
 - Biological taxonomies
 - ♦ Software engineering drawings, e.g. flow charts
 - Social networks

- Useful in visualizing hierarchical models and relationships
 - Many natural examples of hierarchies
 - Biological taxonomies
 - ♦ Software engineering drawings, e.g. flow charts
 - Social networks
 - Hierarchies are level graphs

- Useful in visualizing hierarchical models and relationships
 - Many natural examples of hierarchies
 - Biological taxonomies
 - ♦ Software engineering drawings, e.g. flow charts
 - Social networks
 - Hierarchies are level graphs
 - ♦ Have a single source vertex on level 1
 - ♦ All the edges are directed from higher to lower levels
 - ♦ There exists a monotonic path from the source to every other vertex

- Useful in visualizing hierarchical models and relationships
 - Many natural examples of hierarchies
 - Biological taxonomies
 - ◆ Software engineering drawings, e.g. flow charts
 - Social networks
 - Hierarchies are level graphs
 - Have a single source vertex on level 1
 - ♦ All the edges are directed from higher to lower levels
 - ♦ There exists a monotonic path from the source to every other vertex
 - Any directed acyclic graph DAG can be visualized as a hierarchy

- Useful in visualizing hierarchical models and relationships
 - Many natural examples of hierarchies
 - Biological taxonomies
 - Software engineering drawings, e.g. flow charts
 - Social networks
 - Hierarchies are level graphs
 - Have a single source vertex on level 1
 - ♦ All the edges are directed from higher to lower levels
 - ♦ There exists a monotonic path from the source to every other vertex
 - Any directed acyclic graph DAG can be visualized as a hierarchy
- Application within automated graph drawing

- Useful in visualizing hierarchical models and relationships
 - Many natural examples of hierarchies
 - Biological taxonomies
 - Software engineering drawings, e.g. flow charts
 - Social networks
 - Hierarchies are level graphs
 - Have a single source vertex on level 1
 - ♦ All the edges are directed from higher to lower levels
 - ♦ There exists a monotonic path from the source to every other vertex
 - Any directed acyclic graph DAG can be visualized as a hierarchy
- Application within automated graph drawing
 - Sugiyama's algorithm draws DAG's in a top-down manner
 - Assigns compatible sets of vertices to the same rank or level

- Useful in visualizing hierarchical models and relationships
 - Many natural examples of hierarchies
 - Biological taxonomies
 - ♦ Software engineering drawings, e.g. flow charts
 - Social networks
 - Hierarchies are level graphs
 - Have a single source vertex on level 1
 - ♦ All the edges are directed from higher to lower levels
 - ♦ There exists a monotonic path from the source to every other vertex
 - Any directed acyclic graph DAG can be visualized as a hierarchy
- Application within automated graph drawing
 - Sugiyama's algorithm draws DAG's in a top-down manner
 - ♦ Assigns compatible sets of vertices to the same rank or level
 - Often the desire is to use as few levels as possible

- Useful in visualizing hierarchical models and relationships
 - Many natural examples of hierarchies
 - Biological taxonomies
 - ♦ Software engineering drawings, e.g. flow charts
 - Social networks
 - Hierarchies are level graphs
 - Have a single source vertex on level 1
 - ♦ All the edges are directed from higher to lower levels
 - ♦ There exists a monotonic path from the source to every other vertex
 - Any directed acyclic graph DAG can be visualized as a hierarchy
- Application within automated graph drawing
 - Sugiyama's algorithm draws DAG's in a top-down manner
 - ♦ Assigns compatible sets of vertices to the same rank or level
 - Often the desire is to use as few levels as possible
 - ightharpoonup Finding a k-level assignment for which a graph is level planar is NP-hard

lacksquare O(n) time recognition, embedding and drawing algorithms for level graphs

- lacksquare O(n) time recognition, embedding and drawing algorithms for level graphs
 - ► Jünger, Leipert, and Mutzel gave a linear time recognition algorithm at GD'98
 - ♦ Based on the level planarity test by Heath and Pemmaraju at GD'96
 - ♦ Extends PQ-tree planarity test of hierarchies by Di Battista and Nardelli in 1988

- lacksquare O(n) time recognition, embedding and drawing algorithms for level graphs
 - ► Jünger, Leipert, and Mutzel gave a linear time recognition algorithm at GD'98
 - ♦ Based on the level planarity test by Heath and Pemmaraju at GD'96
 - Extends PQ-tree planarity test of hierarchies by Di Battista and Nardelli in 1988
 - Jünger and Leipert achieved linear time level planar embedding at GD'99
 - Outputs a set of linear orderings of the vertices on each level

- lacksquare O(n) time recognition, embedding and drawing algorithms for level graphs
 - ► Jünger, Leipert, and Mutzel gave a linear time recognition algorithm at GD'98
 - ♦ Based on the level planarity test by Heath and Pemmaraju at GD'96
 - Extends PQ-tree planarity test of hierarchies by Di Battista and Nardelli in 1988
 - ► Jünger and Leipert achieved linear time level planar embedding at GD'99
 - Outputs a set of linear orderings of the vertices on each level
 - ► Eades, Feng, Lin, and Nagamochi Jünger and Leipert devised a straight-line level planar drawing algorithm if the input level graph is level planar
 - lacktriangle Initially ran in $O(|V|^2)$ time in 1997, improved to O(|V|) time in 2006

- lacksquare O(n) time recognition, embedding and drawing algorithms for level graphs
 - ► Jünger, Leipert, and Mutzel gave a linear time recognition algorithm at GD'98
 - ♦ Based on the level planarity test by Heath and Pemmaraju at GD'96
 - Extends PQ-tree planarity test of hierarchies by Di Battista and Nardelli in 1988
 - Jünger and Leipert achieved linear time level planar embedding at GD'99
 - Outputs a set of linear orderings of the vertices on each level
 - ► Eades, Feng, Lin, and Nagamochi Jünger and Leipert devised a straight-line level planar drawing algorithm if the input level graph is level planar
 - lacktriangle Initially ran in $O(|V|^2)$ time in 1997, improved to O(|V|) time in 2006
- Characterizations of level graphs

- lacksquare O(n) time recognition, embedding and drawing algorithms for level graphs
 - ► Jünger, Leipert, and Mutzel gave a linear time recognition algorithm at GD'98
 - ♦ Based on the level planarity test by Heath and Pemmaraju at GD'96
 - ♦ Extends PQ-tree planarity test of hierarchies by Di Battista and Nardelli in 1988
 - Jünger and Leipert achieved linear time level planar embedding at GD'99
 - Outputs a set of linear orderings of the vertices on each level
 - ► Eades, Feng, Lin, and Nagamochi Jünger and Leipert devised a straight-line level planar drawing algorithm if the input level graph is level planar
 - lacktriangle Initially ran in $O(|V|^2)$ time in 1997, improved to O(|V|) time in 2006
- Characterizations of level graphs
 - ► Di Battista and Nardelli provided a characterization of hierarchies in 1988
 - Uses level non-planar (LNP) patterns

- lacksquare O(n) time recognition, embedding and drawing algorithms for level graphs
 - ▶ Jünger, Leipert, and Mutzel gave a linear time recognition algorithm at GD'98
 - ♦ Based on the level planarity test by Heath and Pemmaraju at GD'96
 - ♦ Extends PQ-tree planarity test of hierarchies by Di Battista and Nardelli in 1988
 - Jünger and Leipert achieved linear time level planar embedding at GD'99
 - Outputs a set of linear orderings of the vertices on each level
 - ► Eades, Feng, Lin, and Nagamochi Jünger and Leipert devised a straight-line level planar drawing algorithm if the input level graph is level planar
 - lacktriangle Initially ran in $O(|V|^2)$ time in 1997, improved to O(|V|) time in 2006
- Characterizations of level graphs
 - ► Di Battista and Nardelli provided a characterization of hierarchies in 1988
 - Uses level non-planar (LNP) patterns
 - ► Healy, Kuusik, and Leipert found minimal LNP subgraph patterns at CC'00
 - ♦ Patterns analogous to Kuratowski's subgraphs of regular planar graphs

- lacksquare O(n) time recognition, embedding and drawing algorithms for level graphs
 - ► Jünger, Leipert, and Mutzel gave a linear time recognition algorithm at GD'98
 - Based on the level planarity test by Heath and Pemmaraju at GD'96
 - Extends PQ-tree planarity test of hierarchies by Di Battista and Nardelli in 1988
 - Jünger and Leipert achieved linear time level planar embedding at GD'99
 - Outputs a set of linear orderings of the vertices on each level
 - ► Eades, Feng, Lin, and Nagamochi Jünger and Leipert devised a straight-line level planar drawing algorithm if the input level graph is level planar
 - lacktriangle Initially ran in $O(|V|^2)$ time in 1997, improved to O(|V|) time in 2006
- Characterizations of level graphs
 - ► Di Battista and Nardelli provided a characterization of hierarchies in 1988
 - Uses level non-planar (LNP) patterns
 - ► Healy, Kuusik, and Leipert found minimal LNP subgraph patterns at CC'00
 - ♦ Patterns analogous to Kuratowski's subgraphs of regular planar graphs
 - ► All these characterizations are for a *single* level assignment

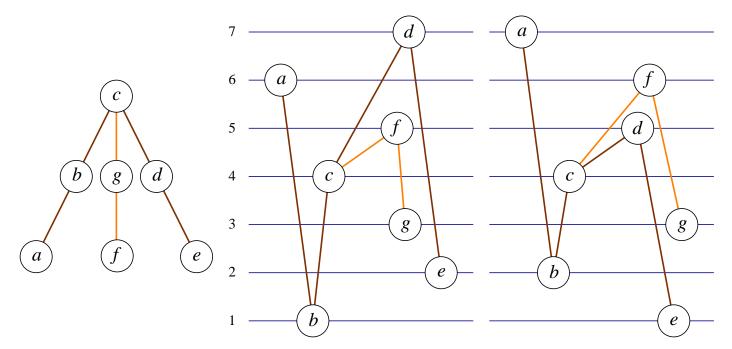
Consider level graphs with bijective level assignments

- Consider level graphs with bijective level assignments
 - \blacktriangleright Each vertex lies on a distinct level, i.e. k=n

- Consider level graphs with bijective level assignments
 - lacktriangle Each vertex lies on a distinct level, i.e. k=n
 - lacktriangle Every planar graph G has some n-level assignment that is level planar
 - lacktriangle Perturb any plane drawing of G such that all the y-coordinates differ

- Consider level graphs with bijective level assignments
 - \blacktriangleright Each vertex lies on a distinct level, i.e. k=n
 - lacktriangle Every planar graph G has some n-level assignment that is level planar
 - lacktriangle Perturb any plane drawing of G such that all the y-coordinates differ
 - ► Only *some* planar graphs are *n*-level planar over *every* level assignment
 - Such graphs are called Unlabeled Level Planar (ULP)

- Consider level graphs with bijective level assignments
 - \blacktriangleright Each vertex lies on a distinct level, i.e. k=n
 - lacktriangle Every planar graph G has some n-level assignment that is level planar
 - lacktriangle Perturb any plane drawing of G such that all the y-coordinates differ
 - ► Only *some* planar graphs are *n*-level planar over *every* level assignment
 - Such graphs are called Unlabeled Level Planar (ULP)



Unlabeled Level Planarity – Motivation

Application with simultaneous embedding

Unlabeled Level Planarity – Motivation

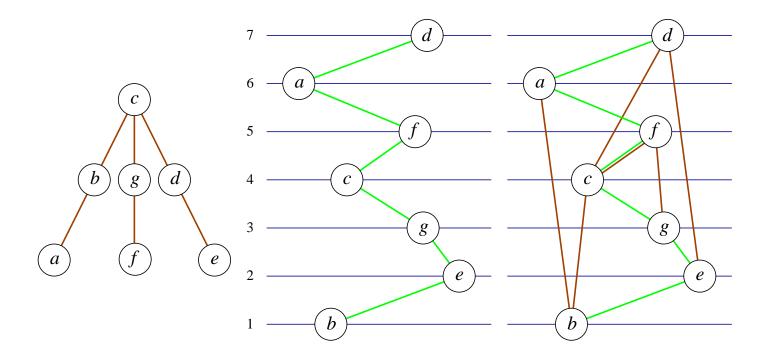
- Application with simultaneous embedding
 - lacktriangle Embedding of multiple planar graphs onto the same vertex set V

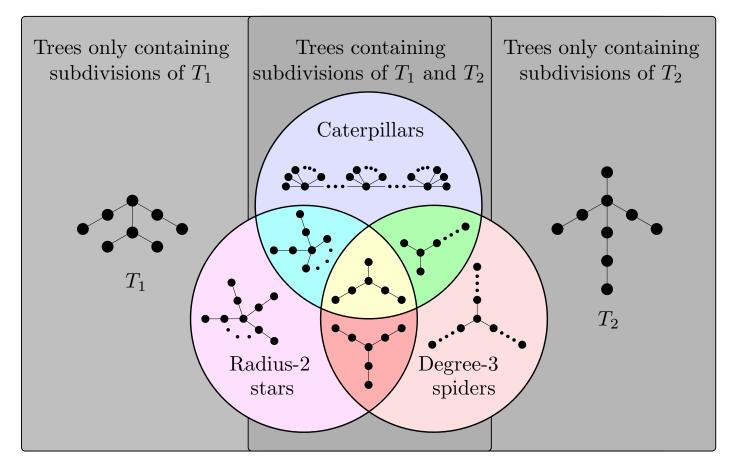
- Application with simultaneous embedding
 - lacktriangle Embedding of multiple planar graphs onto the same vertex set V
 - ♦ Has to work for *any* vertex mapping between graphs

- Application with simultaneous embedding
 - lacktriangle Embedding of multiple planar graphs onto the same vertex set V
 - ♦ Has to work for any vertex mapping between graphs
 - ♦ Desire straight-line edges

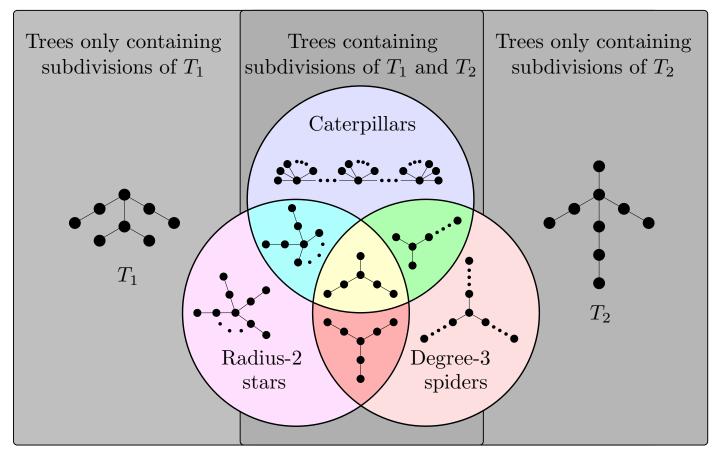
- Application with simultaneous embedding
 - lacktriangle Embedding of multiple planar graphs onto the same vertex set V
 - ♦ Has to work for *any* vertex mapping between graphs
 - Desire straight-line edges
 - ♦ No crossings allowed within each planar layer

- Application with simultaneous embedding
 - lacktriangle Embedding of multiple planar graphs onto the same vertex set V
 - Has to work for any vertex mapping between graphs
 - ♦ Desire straight-line edges
 - ♦ No crossings allowed within each planar layer
 - lacktriangle Can simultaneously embed a path P with any ULP graph G

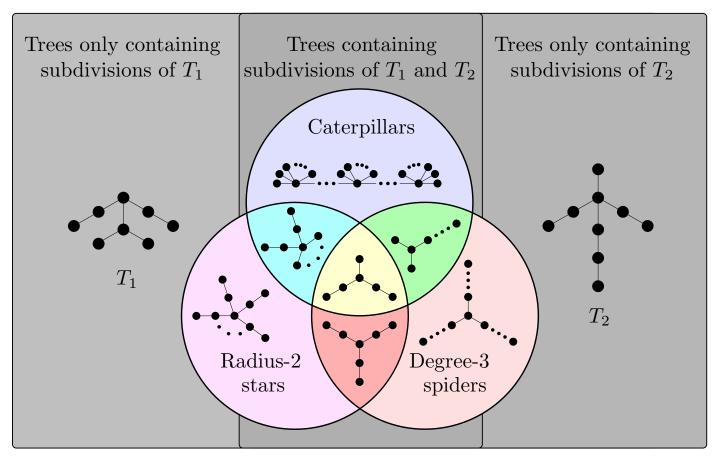




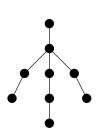
Characterization of ULP trees by two forbidden subdivisions

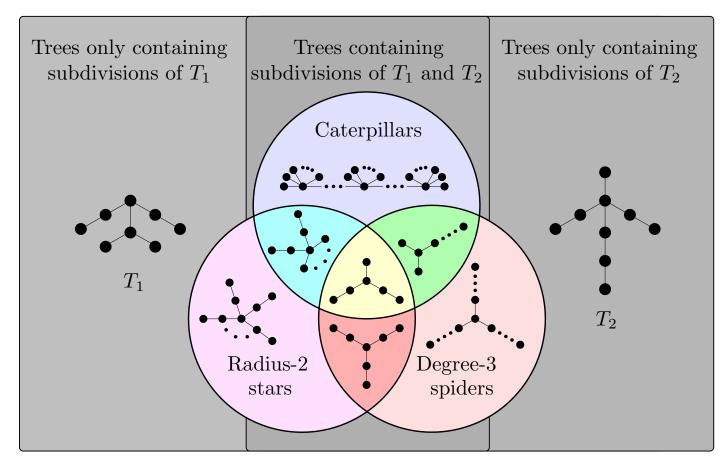


- Characterization of ULP trees by two forbidden subdivisions
 - ightharpoonup Tree T_1 with 8 vertices and two nodes of degree 3

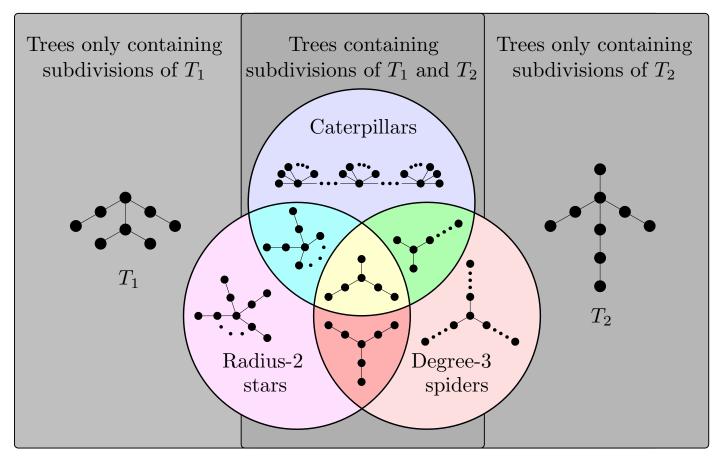


- Characterization of ULP trees by two forbidden subdivisions
 - ightharpoonup Tree T_1 with 8 vertices and two nodes of degree 3
 - lacktriangle Tree T_2 with 9 vertices and one node of degree 4

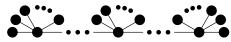


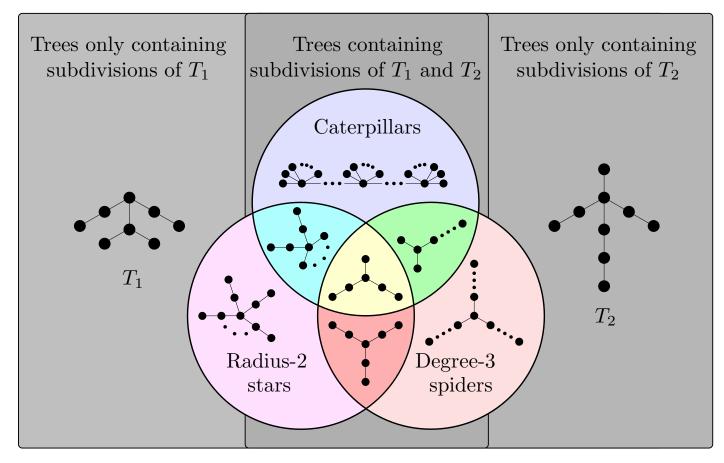


All ULP trees fall into one of three categories:

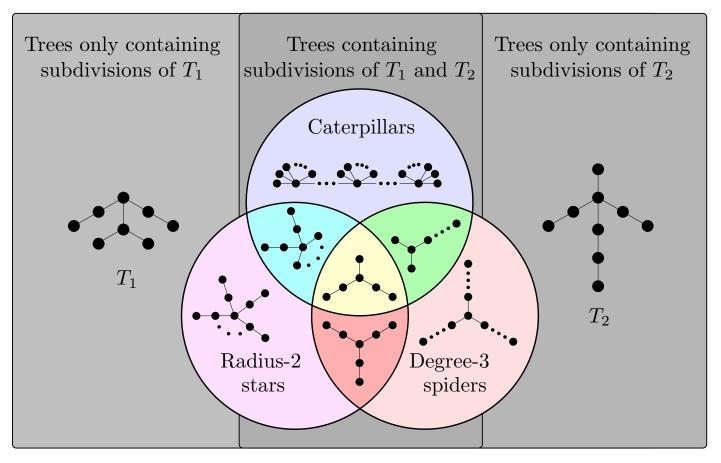


- All ULP trees fall into one of three categories:
 - **▶** Caterpillars

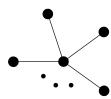


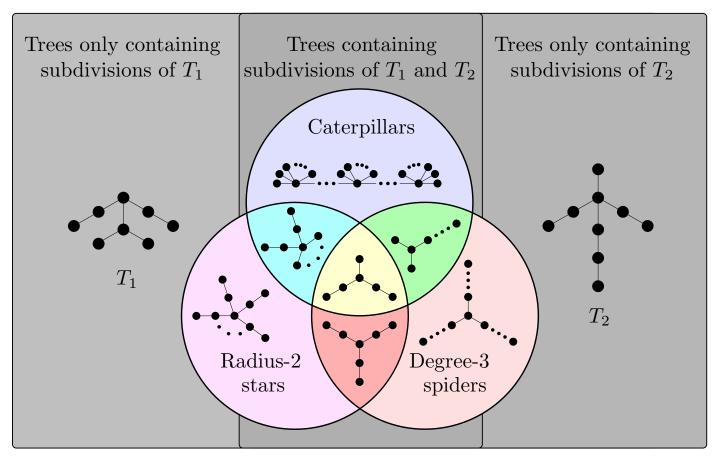


- All ULP trees fall into one of three categories:
 - **▶** Caterpillars

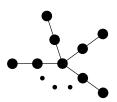


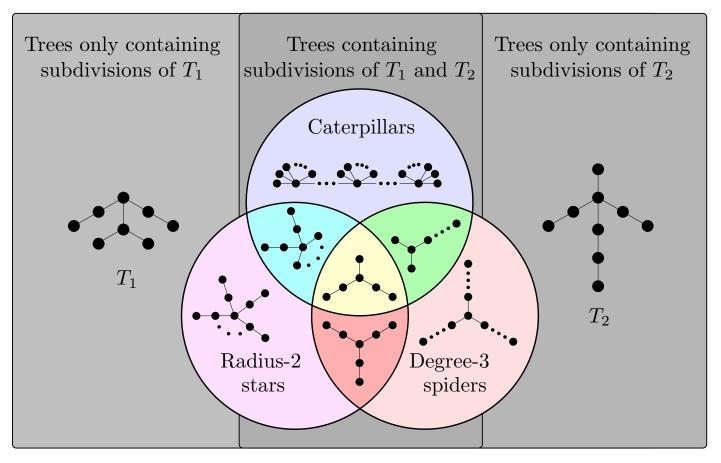
- All ULP trees fall into one of three categories:
 - Caterpillars
 - ► Radius-2 stars



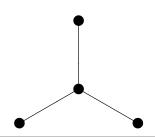


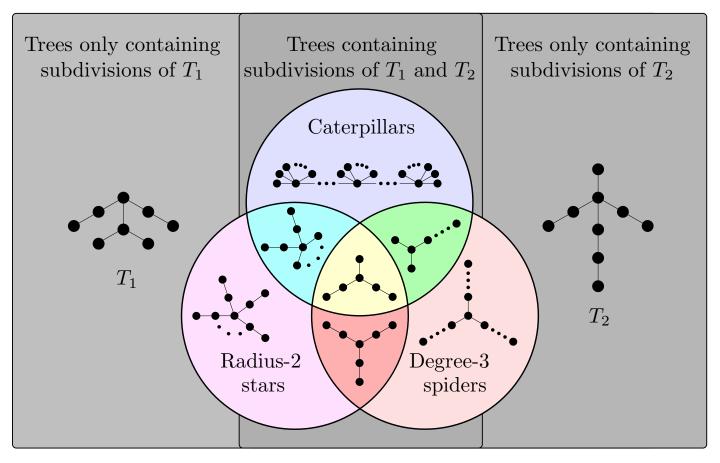
- All ULP trees fall into one of three categories:
 - Caterpillars
 - ► Radius-2 stars



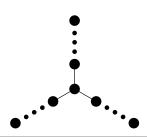


- All ULP trees fall into one of three categories:
 - Caterpillars
 - Radius-2 stars
 - ► Degree-3 spiders





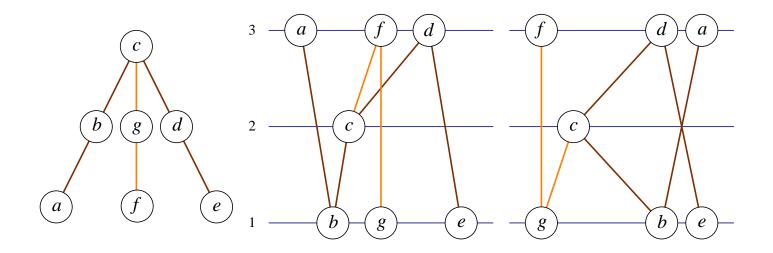
- All ULP trees fall into one of three categories:
 - Caterpillars
 - Radius-2 stars
 - ► Degree-3 spiders



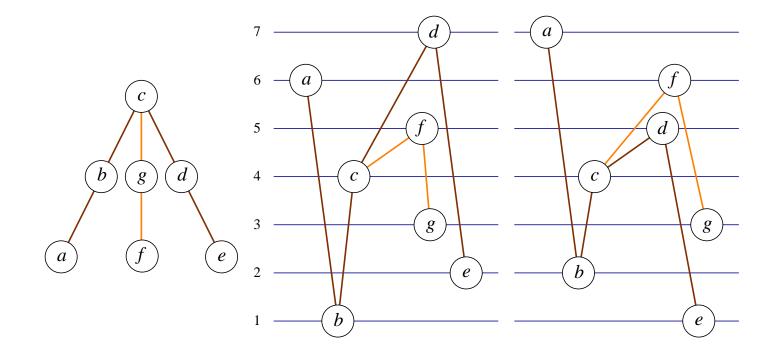
More restrictive than standard planarity

- More restrictive than standard planarity
 - All level planar graphs are planar

- More restrictive than standard planarity
 - All level planar graphs are planar
 - But not all planar graphs are level planar for a given level assignment



- More restrictive than standard planarity
 - All level planar graphs are planar
 - ► But not all planar graphs are level planar for a given level assignment
- A ULP graph can have a non-level planar assignment



For an n-level graph $G(V, E, \phi)$

- For an n-level graph $G(V, E, \phi)$
 - ightharpoonup A *chain* C is a path $v_1-v_2-\cdots-v_j$ in the underlying undirected graph

- For an n-level graph $G(V, E, \phi)$
 - lacktriangleq A *chain* C is a path $v_1-v_2-\cdots-v_j$ in the underlying undirected graph
 - lacksquare < Y denotes the linear ordering of V induced by ϕ
 - $lack u <_Y v \iff \phi(u) < \phi(v) \iff u \text{ lies below } v$

- For an n-level graph $G(V, E, \phi)$
 - ightharpoonup A *chain* C is a path $v_1-v_2-\cdots-v_j$ in the underlying undirected graph
 - - $lack u <_Y v \iff \phi(u) < \phi(v) \iff u \text{ lies below } v$
 - $lack <_X$ denotes the linear ordering of V induced by the x-coordinates of a level drawing of G
 - $lacktriangledown u <_X v \iff$ u lies to the right of v

- For an n-level graph $G(V, E, \phi)$
 - ightharpoonup A *chain* C is a path $v_1-v_2-\cdots-v_j$ in the underlying undirected graph
 - - $lack u <_Y v \iff \phi(u) < \phi(v) \iff u \text{ lies below } v$
 - $lack <_X$ denotes the linear ordering of V induced by the x-coordinates of a level drawing of G
 - $lacktriangledown u <_X v \iff$ u lies to the right of v
 - lacktriangle Both $<_X$ and $<_Y$ can be extended to compare a vertex with a chain C

- For an n-level graph $G(V, E, \phi)$
 - ightharpoonup A *chain* C is a path $v_1-v_2-\cdots-v_j$ in the underlying undirected graph
 - - $lack u <_Y v \iff \phi(u) < \phi(v) \iff u \text{ lies below } v$
 - $lack <_X$ denotes the linear ordering of V induced by the x-coordinates of a level drawing of G
 - $lack u <_X v \iff$ u lies to the right of v
 - lacktriangle Both $<_X$ and $<_Y$ can be extended to compare a vertex with a chain C

 $\iff u$ lies to the right of every point at which C intersects level $\phi(u)$

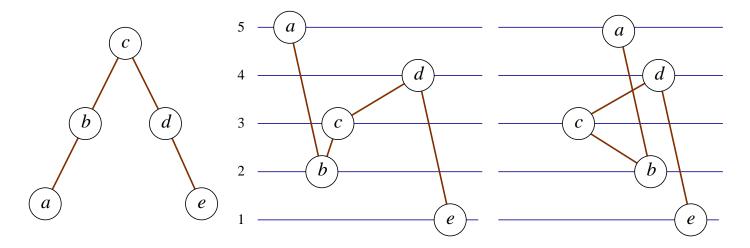
- For an n-level graph $G(V, E, \phi)$
 - ightharpoonup A chain C is a path $v_1-v_2-\cdots-v_j$ in the underlying undirected graph
 - - $lack u <_Y v \iff \phi(u) < \phi(v) \iff u \text{ lies below } v$
 - $lack <_X$ denotes the linear ordering of V induced by the x-coordinates of a level drawing of G
 - $lack u <_X v \iff$ u lies to the right of v
 - lacktriangle Both $<_X$ and $<_Y$ can be extended to compare a vertex with a chain C

 $\iff u$ lies to the right of every point at which C intersects level $\phi(u)$

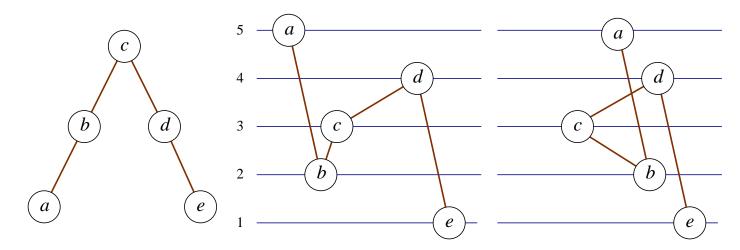
 $\iff u$ lies below every point that C shares the same x-coordinate as u

Let C be some chain a-b-c-d-e

- Let C be some chain a-b-c-d-e

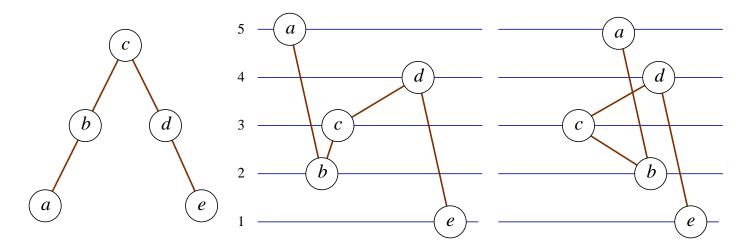


- Let C be some chain a-b-c-d-e



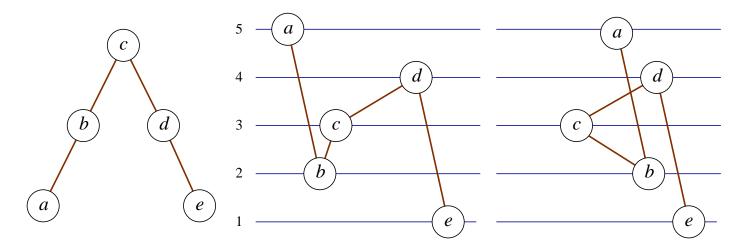
- ► Then either
 - \bullet $a-b <_X c <_X d-e$ or
 - $lack d-e <_X c <_X a-b$, i.e, c is between a-b and d-e

- Let C be some chain a-b-c-d-e



- ► Then either
 - \bullet $a-b <_X c <_X d-e$ or
 - $lack d-e <_X c <_X a-b$, i.e, c is between a-b and d-e
- ightharpoonup Since otherwise c-b-a will cross c-d-e

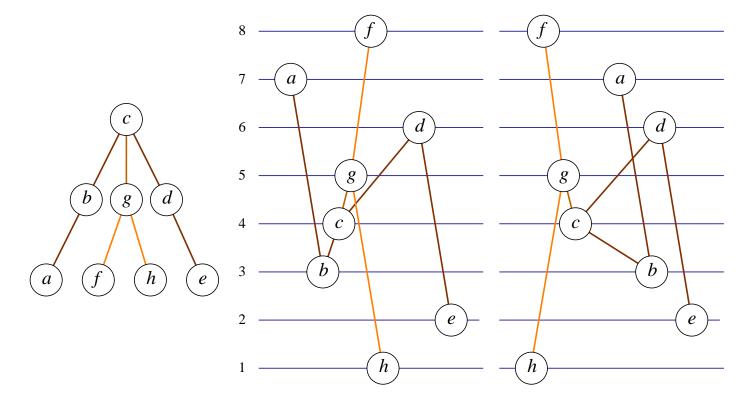
- \blacksquare Let C be some chain a-b-c-d-e



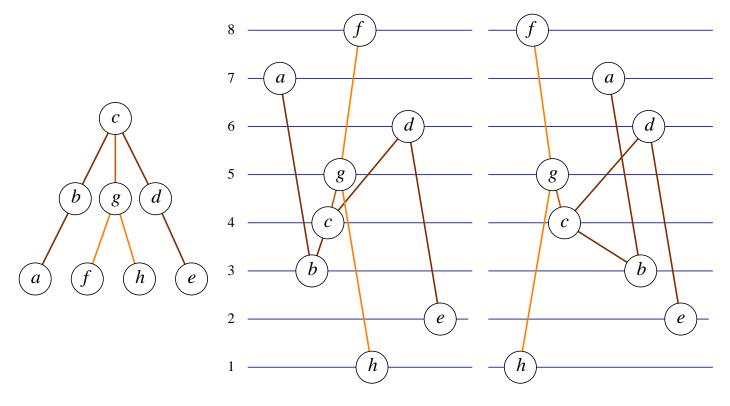
- ► Then either
 - \bullet $a-b <_X c <_X d-e$ or
 - $lack d-e <_X c <_X a-b$, i.e, c is between a-b and d-e
- ightharpoonup Since otherwise c-b-a will cross c-d-e
- So c cannot be leftmost or rightmost without forcing a crossing
 - lacktriangle Can use this property to prove T_1 and T_2 are not ULP

 \blacksquare Let C be the chain a-b-c-d-e

- Let C be the chain a-b-c-d-e
 - ▶ Where $\{a, f\} <_Y d <_Y \{c, g\} <_Y b <_Y \{e, h\}$

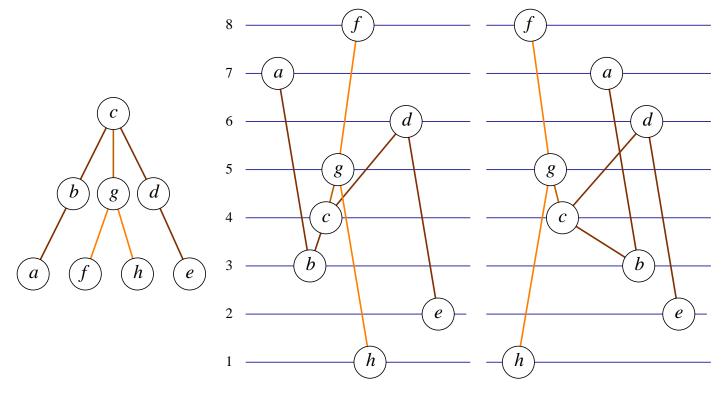


- \blacksquare Let C be the chain a-b-c-d-e
 - ▶ Where $\{a, f\} <_Y d <_Y \{c, g\} <_Y b <_Y \{e, h\}$



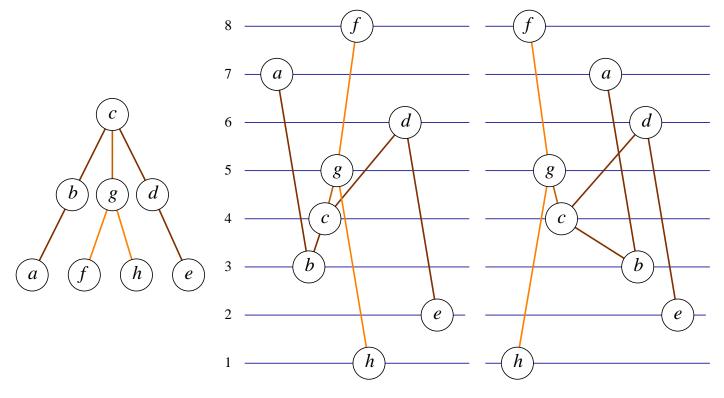
- Can assume without loss of generality that
 - \bullet a-b < x c < x d-e
 - lacktriangle I.e., c lies between a-b and d-e

- Let C be the chain a-b-c-d-e
 - ▶ Where $\{a, f\} <_Y d <_Y \{c, g\} <_Y b <_Y \{e, h\}$



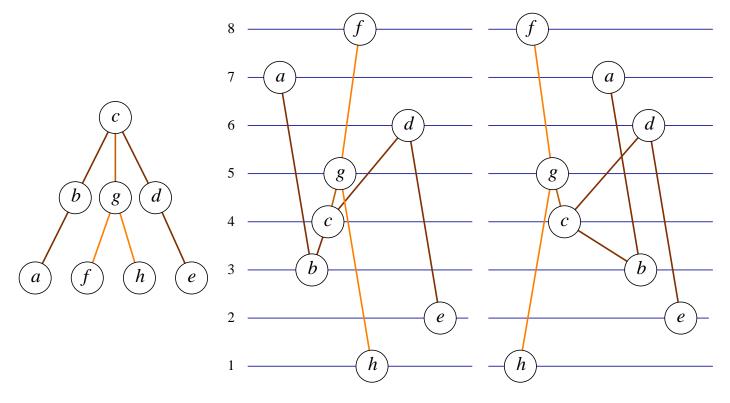
- ▶ Implies that $a-b <_X g <_X d-e$
 - lacktriangle Otherwise, c-g will cross a-b or d-e

- \blacksquare Let C be the chain a-b-c-d-e
 - ▶ Where $\{a, f\} <_Y d <_Y \{c, g\} <_Y b <_Y \{e, h\}$



- ► Then either $g >_Y a b c d$
 - lacktriangle In which case g-h crosses a-b-c-d

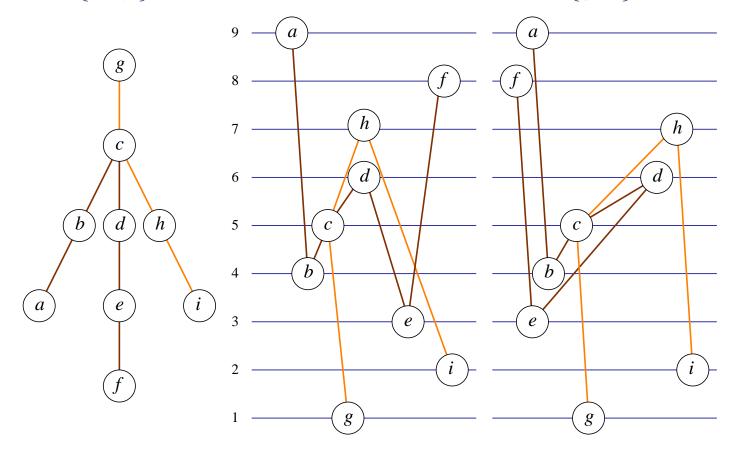
- \blacksquare Let C be the chain a-b-c-d-e
 - ▶ Where $\{a, f\} <_Y d <_Y \{c, g\} <_Y b <_Y \{e, h\}$



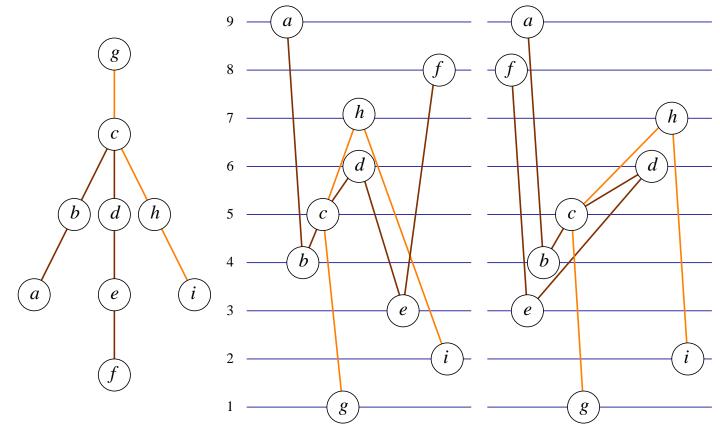
- - lacktriangle In which case g-f crosses b-c-d-e

 \blacksquare Let C be the chain a-b-c-d-e

- Let C be the chain a-b-c-d-e
 - ▶ Where $\{a, f\} <_Y h <_Y d <_Y c <_Y b <_Y e <_Y \{g, i\}$

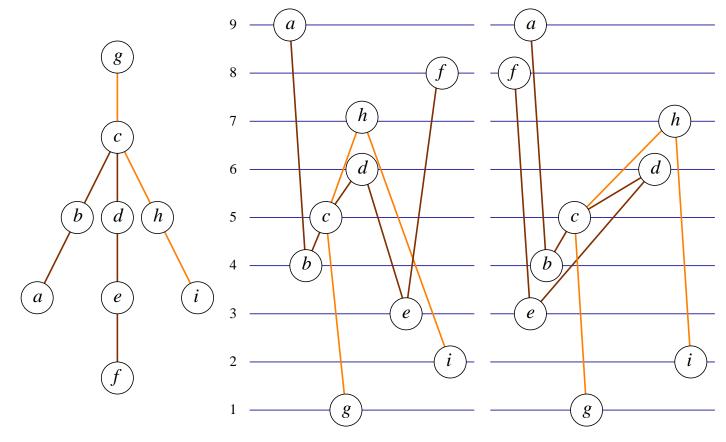


- \blacksquare Let C be the chain a-b-c-d-e
 - ▶ Where $\{a, f\} <_Y h <_Y d <_Y c <_Y b <_Y e <_Y \{g, i\}$



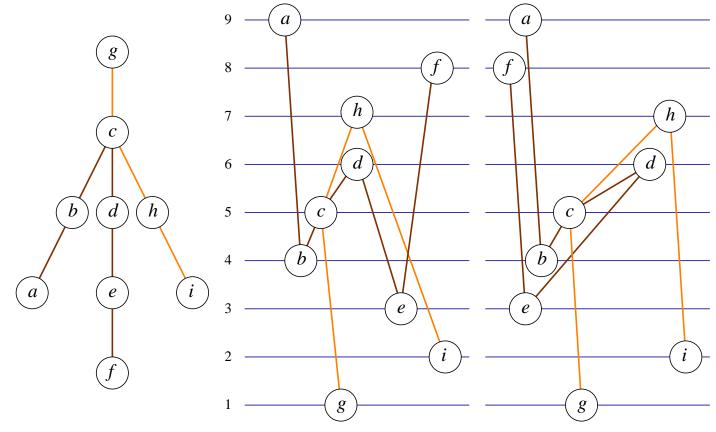
- One can assume without loss of generality that
 - $lack a-b <_X c <_X d-e \text{ since } a <_Y d <_Y c <_Y b <_Y e$

- \blacksquare Let C be the chain a-b-c-d-e
 - ▶ Where $\{a, f\} <_Y h <_Y d <_Y c <_Y b <_Y e <_Y \{g, i\}$



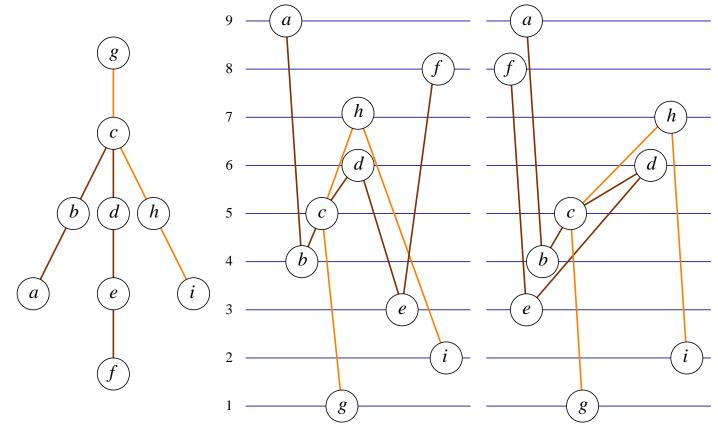
- ► AND one can also assume that

- \blacksquare Let C be the chain a-b-c-d-e
 - ▶ Where $\{a, f\} <_Y h <_Y d <_Y c <_Y b <_Y e <_Y \{g, i\}$



- $\qquad \qquad \mathbf{Implies \ that} \ c g <_X e <_X h i$
 - lacktriangle Since otherwise c-g will cross d-e or d-e will cross h-i

- \blacksquare Let C be the chain a-b-c-d-e
 - ▶ Where $\{a, f\} <_Y h <_Y d <_Y c <_Y b <_Y e <_Y \{g, i\}$



- lacktriangle However, this implies that $e <_Y g c h i$
 - lacktriangle In which case e-f crosses g-c-h-i

Forbidden Trees – Lemma and Corollary

Existence of labelings in which T_1 and T_2 are not level planar gives the following lemma:

Lemma 1 There exist labelings that prevent T_1 and T_2 from being level planar.

Forbidden Trees – Lemma and Corollary

- Existence of labelings in which T_1 and T_2 are not level planar gives the following lemma:
 - **Lemma 1** There exist labelings that prevent T_1 and T_2 from being level planar.
- Considering subdivisions gives the next corollary:
 - **Corollary 2** If a tree T(V, E) contains a subdivision of T_1 or T_2 , then it cannot be unlabeled level planar.

Forbidden Trees – Lemma and Corollary

- Existence of labelings in which T_1 and T_2 are not level planar gives the following lemma:
 - **Lemma 1** There exist labelings that prevent T_1 and T_2 from being level planar.
- Considering subdivisions gives the next corollary:
 - **Corollary 2** If a tree T(V, E) contains a subdivision of T_1 or T_2 , then it cannot be unlabeled level planar.
- Proof idea:
 - Assign intermediate levels to vertices of subdivided edges

 \blacksquare An n-level realization of a caterpillar in linear time gives the next lemma:

 \blacksquare An n-level realization of a caterpillar in linear time gives the next lemma:

- \blacksquare An n-level realization of a caterpillar in linear time gives the next lemma:
 - **Lemma 3** (Brass et al., 2003) An n-vertex caterpillar T(V,E) with an m-vertex spine can be n-level realized in O(n) time on a $2m \times n$ grid for any vertex labeling $\phi: V \xrightarrow[onto]{1:1} \{1, 2, \ldots, n\}$.
- Proof idea:
 - ightharpoonup Embed spine vertices left to right on even x-coordinates

 \blacksquare An n-level realization of a caterpillar in linear time gives the next lemma:

- Proof idea:
 - ightharpoonup Embed spine vertices left to right on even x-coordinates
 - Then embed adjacent leaf vertices directly to the right one unit on odd x-coordinates

 \blacksquare An n-level realization of a caterpillar in linear time gives the next lemma:

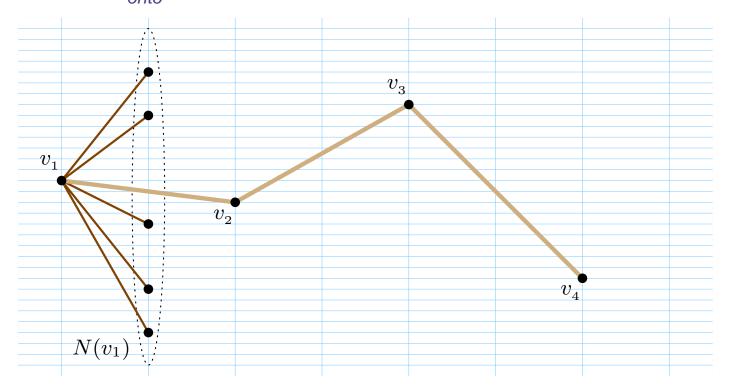
- Proof idea:
 - ightharpoonup Embed spine vertices left to right on even x-coordinates
 - Then embed adjacent leaf vertices directly to the right one unit on odd x-coordinates
 - ♦ If a leaf vertex would lie on an edge, embed it directly below its spine vertex

 \blacksquare An n-level realization of a caterpillar in linear time gives the next lemma:

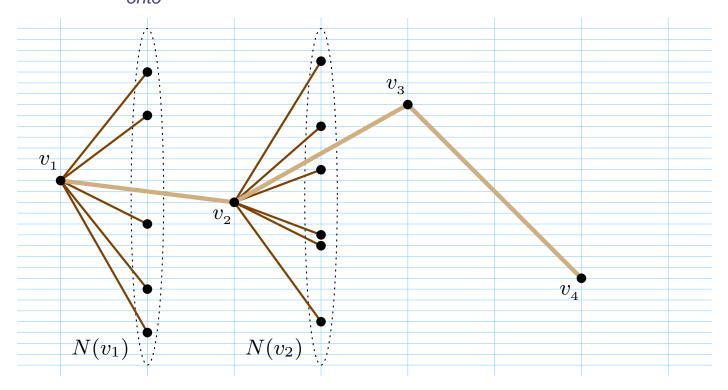
- Proof idea:
 - ightharpoonup Embed spine vertices left to right on even x-coordinates
 - Then embed adjacent leaf vertices directly to the right one unit on odd x-coordinates
 - ♦ If a leaf vertex would lie on an edge, embed it directly below its spine vertex
 - ♦ Can only happen for at most one leaf vertex per spine edge

 \blacksquare An n-level realization of a caterpillar in linear time gives the next lemma:

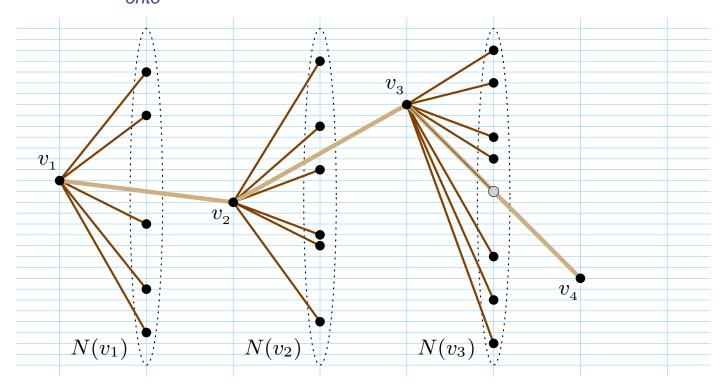
 \blacksquare An n-level realization of a caterpillar in linear time gives the next lemma:



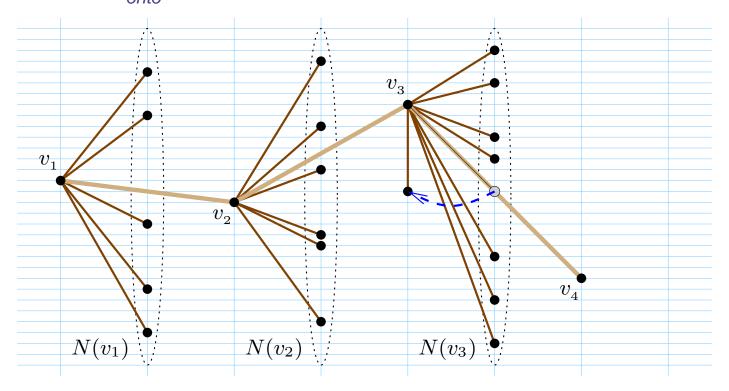
 \blacksquare An n-level realization of a caterpillar in linear time gives the next lemma:



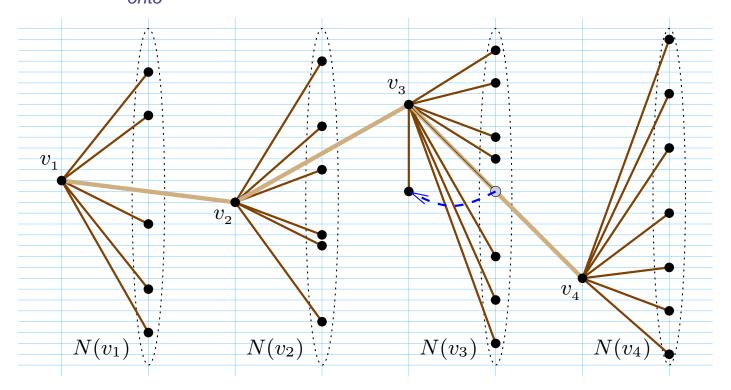
 \blacksquare An n-level realization of a caterpillar in linear time gives the next lemma:



 \blacksquare An n-level realization of a caterpillar in linear time gives the next lemma:



 \blacksquare An n-level realization of a caterpillar in linear time gives the next lemma:



 \blacksquare An n-level realization of a radius-2 star in linear time yields the next lemma:

 \blacksquare An n-level realization of a radius-2 star in linear time yields the next lemma:

- \blacksquare An n-level realization of a radius-2 star in linear time yields the next lemma:
 - **Lemma 4** An n-vertex radius-2 star T(V,E) can be n-level realized in O(n) time on a $(2n+3)\times n$ grid for any vertex labeling $\phi:V\xrightarrow[onto]{1:1}\{1,\,2,\,\ldots,\,n\}$.
- Proof idea:
 - \triangleright Embed root vertex in middle of the x-coordinates

 \blacksquare An n-level realization of a radius-2 star in linear time yields the next lemma:

- Proof idea:
 - ► Embed root vertex in middle of the *x*-coordinates
 - ► Then embed adjacent vertices that have a leaf vertex below to the left, otherwise to the right

 \blacksquare An n-level realization of a radius-2 star in linear time yields the next lemma:

Lemma 4 An n-vertex radius-2 star T(V,E) can be n-level realized in O(n) time on a $(2n+3)\times n$ grid for any vertex labeling $\phi:V\xrightarrow[onto]{1:1}\{1,\,2,\,\ldots,\,n\}$.

Proof idea:

- ► Embed root vertex in middle of the *x*-coordinates
- ► Then embed adjacent vertices that have a leaf vertex below to the left, otherwise to the right
- Embed leaf vertices so that their incident edge segment has a slope of 1

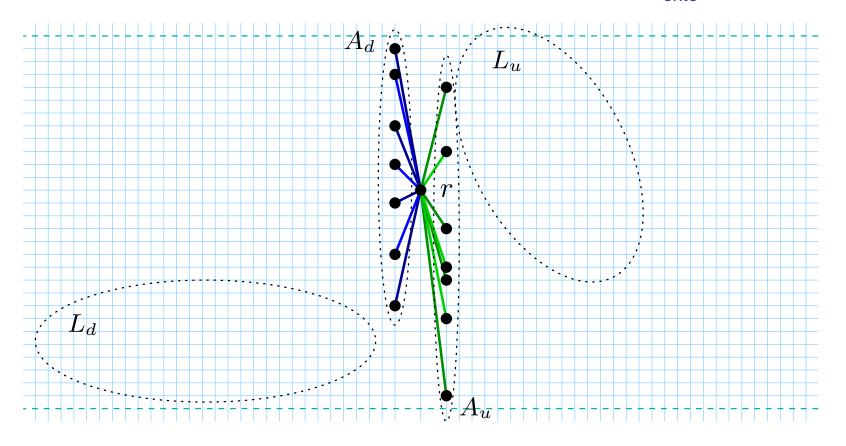
 \blacksquare An n-level realization of a radius-2 star in linear time yields the next lemma:

Lemma 4 An n-vertex radius-2 star T(V,E) can be n-level realized in O(n) time on a $(2n+3)\times n$ grid for any vertex labeling $\phi:V\xrightarrow[onto]{1:1}\{1,\,2,\,\ldots,\,n\}$.

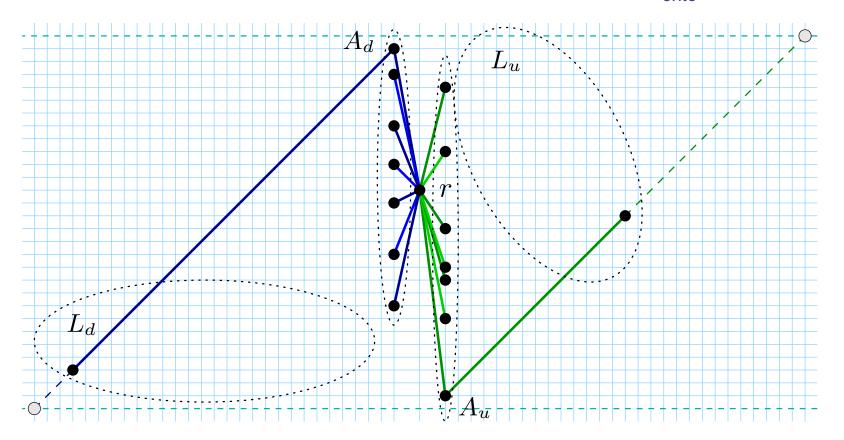
Proof idea:

- ► Embed root vertex in middle of the *x*-coordinates
- ► Then embed adjacent vertices that have a leaf vertex below to the left, otherwise to the right
- Embed leaf vertices so that their incident edge segment has a slope of 1
 - lack Use imaginary levels above and below to determine x-coordinate

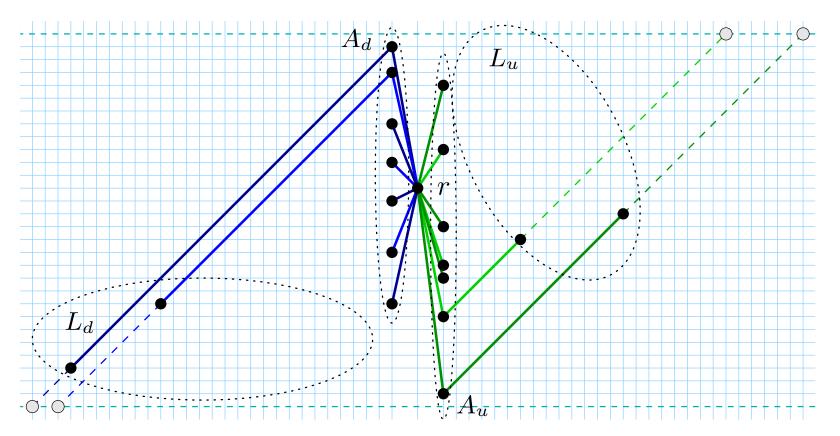
 \blacksquare An n-level realization of a radius-2 star in linear time yields the next lemma:



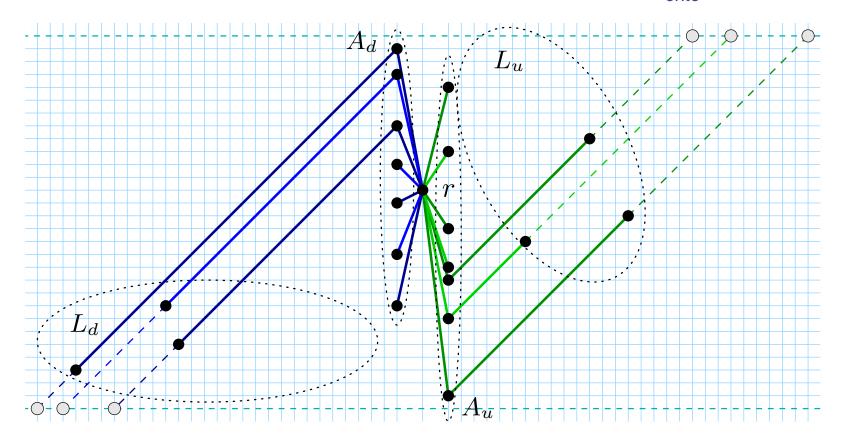
 \blacksquare An n-level realization of a radius-2 star in linear time yields the next lemma:



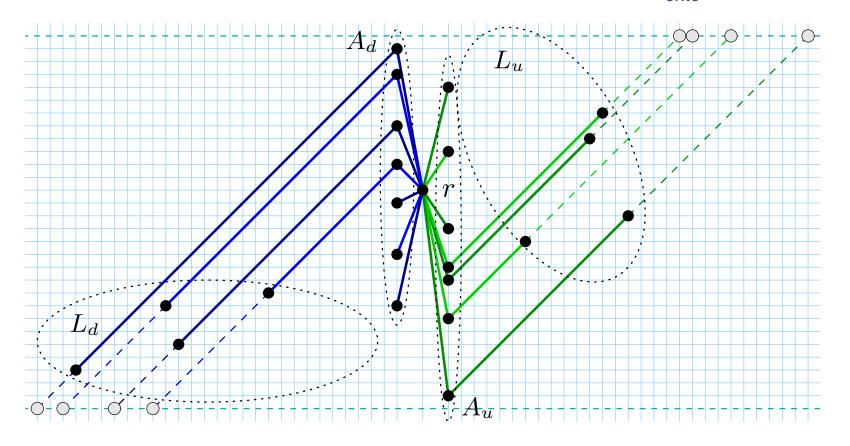
 \blacksquare An n-level realization of a radius-2 star in linear time yields the next lemma:



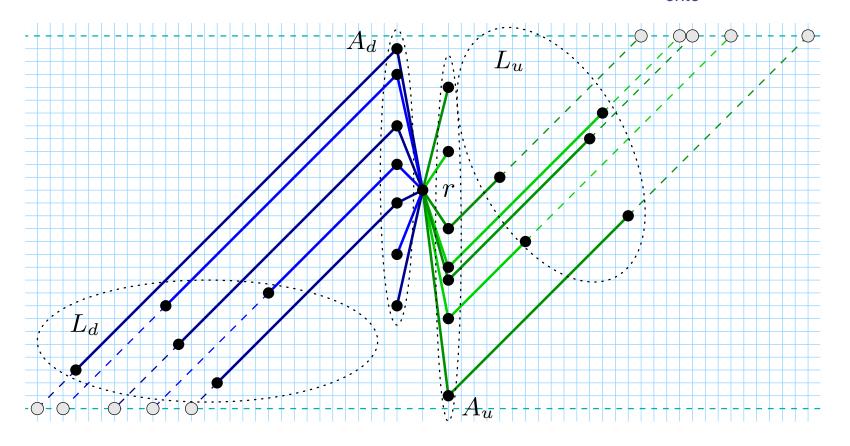
 \blacksquare An n-level realization of a radius-2 star in linear time yields the next lemma:



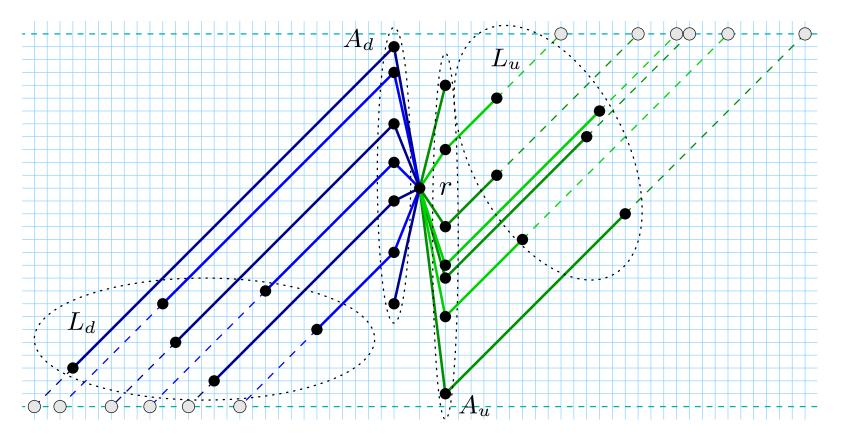
 \blacksquare An n-level realization of a radius-2 star in linear time yields the next lemma:



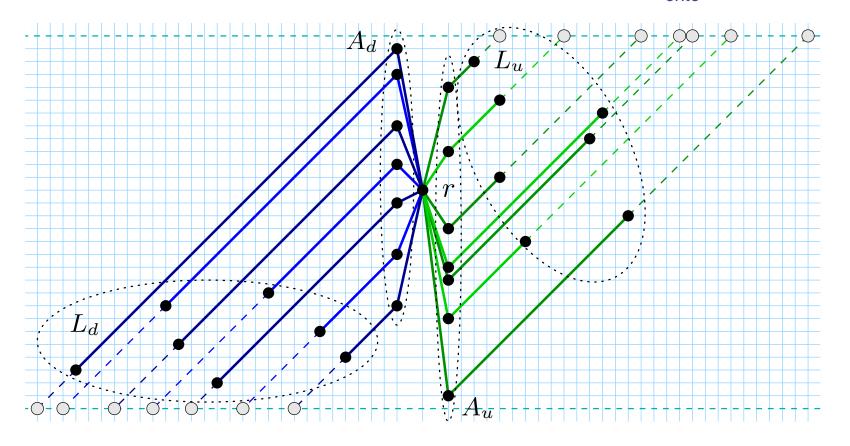
 \blacksquare An n-level realization of a radius-2 star in linear time yields the next lemma:



 \blacksquare An n-level realization of a radius-2 star in linear time yields the next lemma:



 \blacksquare An n-level realization of a radius-2 star in linear time yields the next lemma:



Degree-3 Spiders – Linear Time Realization

 \blacksquare An n-level realization of a degree-3 spider in linear time gives the subsequent lemma:

An n-level realization of a degree-3 spider in linear time gives the subsequent lemma:

An n-level realization of a degree-3 spider in linear time gives the subsequent lemma:

- Proof idea:
 - ► First transform the degree-3 spider into a strictly expanding one

An n-level realization of a degree-3 spider in linear time gives the subsequent lemma:

Lemma 5 An n-vertex degree-3 spider T(V,E) can be n-level realized in O(n) time for any vertex labeling $\phi:V\xrightarrow[onto]{1:1}\{1,\,2,\,\ldots,\,n\}$.

- ► First transform the degree-3 spider into a strictly expanding one
- ► Then greedily draw the strictly expanding degree-3 spider starting from the root vertex and selecting the chain that has the least visibility until either

An n-level realization of a degree-3 spider in linear time gives the subsequent lemma:

Lemma 5 An n-vertex degree-3 spider T(V,E) can be n-level realized in O(n) time for any vertex labeling $\phi:V\xrightarrow[onto]{1:1}\{1,\,2,\,\ldots,\,n\}$.

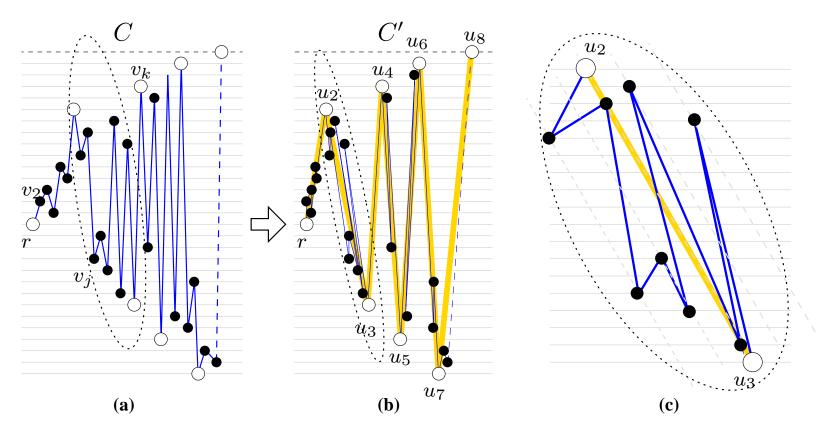
- First transform the degree-3 spider into a strictly expanding one
- ► Then greedily draw the strictly expanding degree-3 spider starting from the root vertex and selecting the chain that has the least visibility until either
 - ♦ A new minimum or maximum vertex is obtained OR

An n-level realization of a degree-3 spider in linear time gives the subsequent lemma:

Lemma 5 An n-vertex degree-3 spider T(V,E) can be n-level realized in O(n) time for any vertex labeling $\phi:V\xrightarrow[onto]{1:1}\{1,\,2,\,\ldots,\,n\}$.

- ► First transform the degree-3 spider into a strictly expanding one
- ► Then greedily draw the strictly expanding degree-3 spider starting from the root vertex and selecting the chain that has the least visibility until either
 - ♦ A new minimum or maximum vertex is obtained OR
 - ♦ The end of the chain is reached

An n-level realization of a degree-3 spider in linear time gives the subsequent lemma:

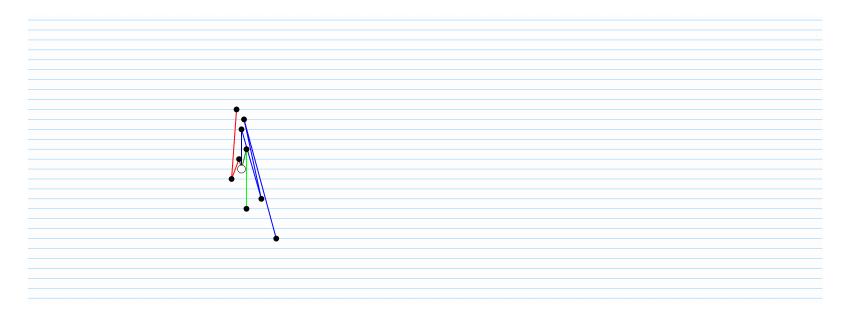


An n-level realization of a degree-3 spider in linear time gives the subsequent lemma:

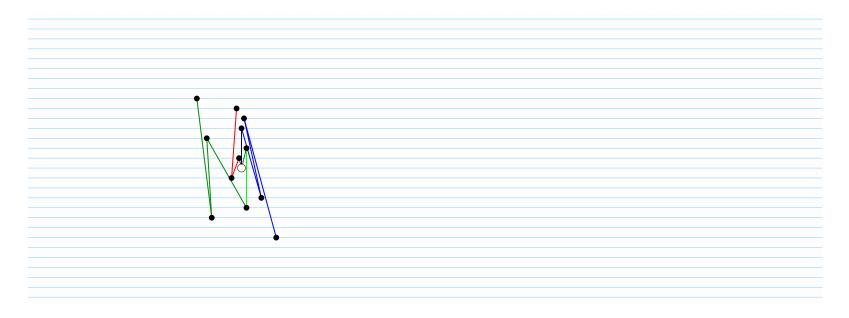
An n-level realization of a degree-3 spider in linear time gives the subsequent lemma:

An n-level realization of a degree-3 spider in linear time gives the subsequent lemma:

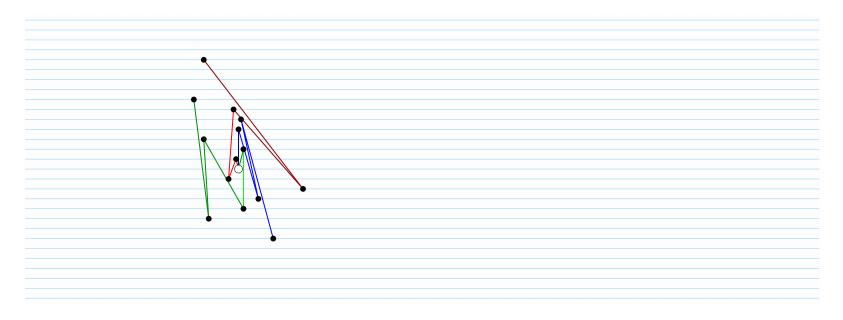
An n-level realization of a degree-3 spider in linear time gives the subsequent lemma:



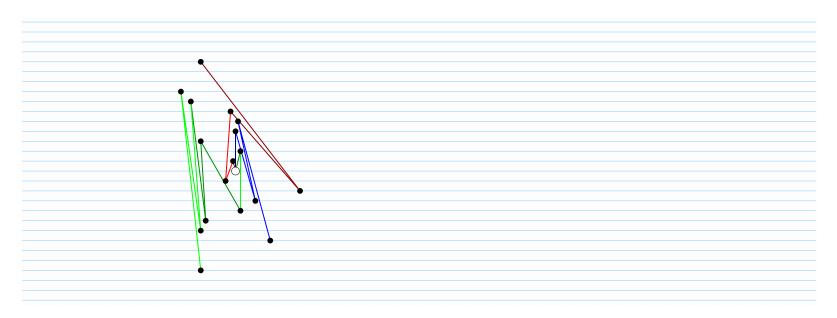
An n-level realization of a degree-3 spider in linear time gives the subsequent lemma:



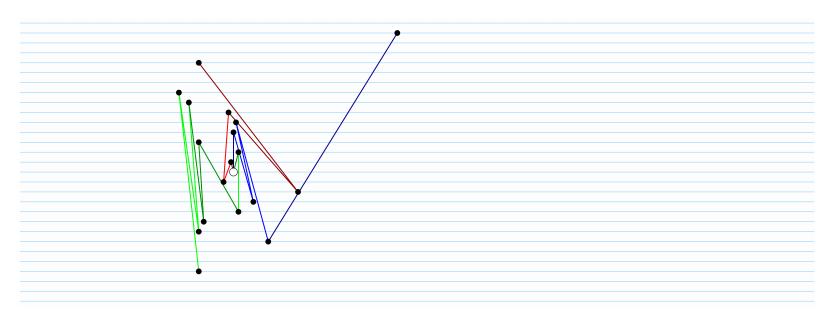
An n-level realization of a degree-3 spider in linear time gives the subsequent lemma:



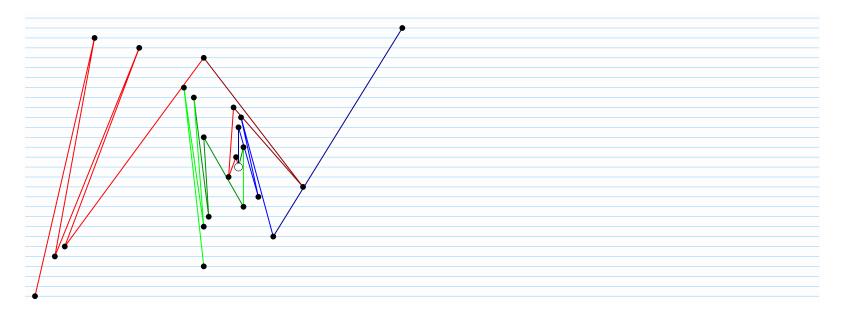
An n-level realization of a degree-3 spider in linear time gives the subsequent lemma:



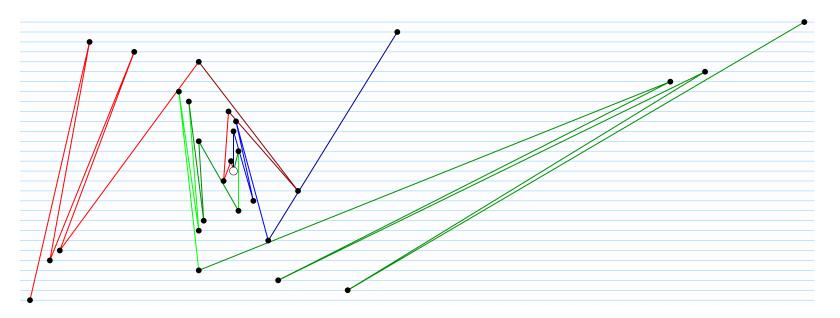
An n-level realization of a degree-3 spider in linear time gives the subsequent lemma:



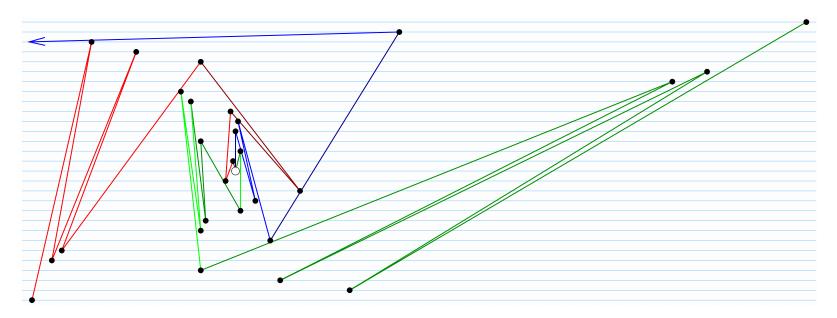
An n-level realization of a degree-3 spider in linear time gives the subsequent lemma:



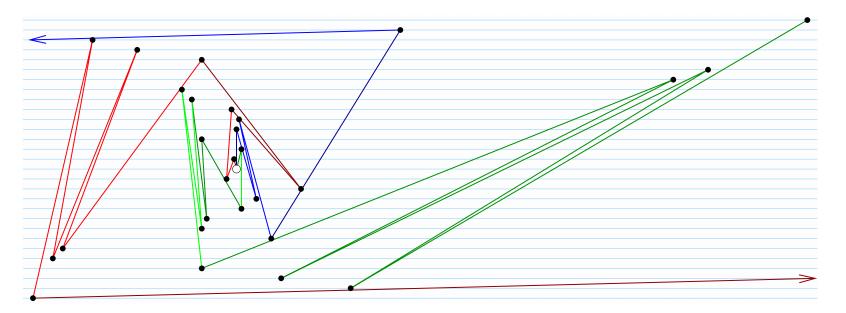
An n-level realization of a degree-3 spider in linear time gives the subsequent lemma:



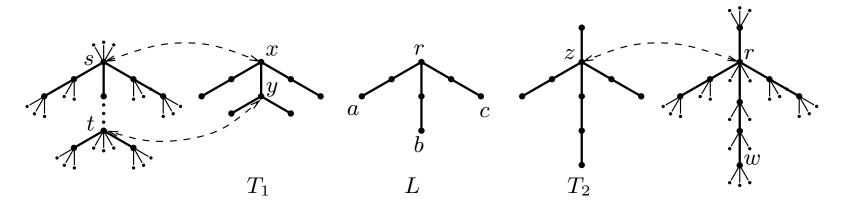
An n-level realization of a degree-3 spider in linear time gives the subsequent lemma:



An n-level realization of a degree-3 spider in linear time gives the subsequent lemma:

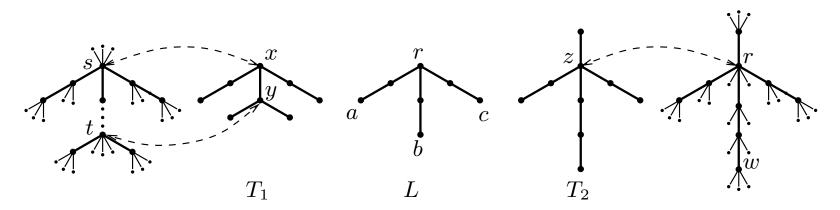


Forbidden Trees – Minimality

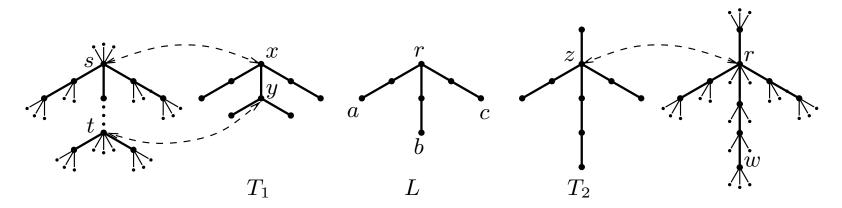


■ Brute force consideration of the removal of edges from T_1 and T_2 gives the following lemma:

Lemma 6 Removing any edge from T_1 or T_2 yields a forest of ULP trees.

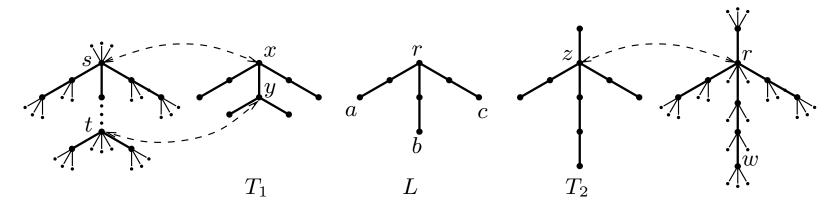


A minimal lobster argument gives the next theorem:



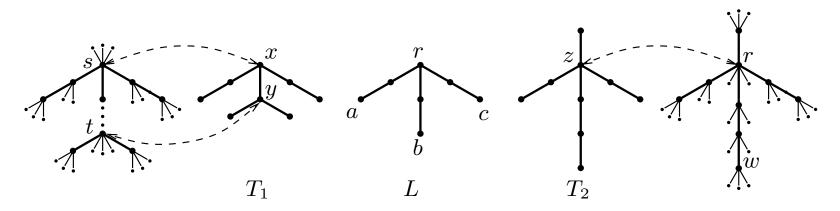
A minimal lobster argument gives the next theorem:

Theorem 7 Every tree either contains a subdivision of T_1 or T_2 in which case it is not ULP, or it is a caterpillar, a radius-2 star, or a 3 spider in which case it is ULP.



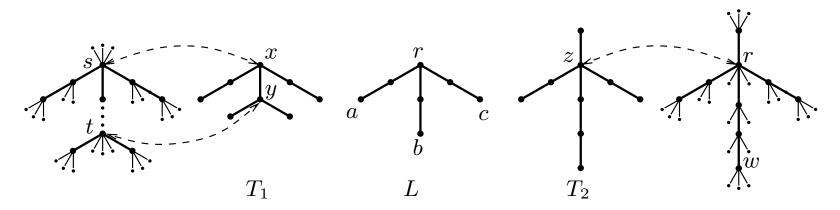
A minimal lobster argument gives the next theorem:

- Proof idea:
 - $ightharpoonup T_1$ and T_2 are not caterpillars, radius-2 stars, or degree-3 spiders



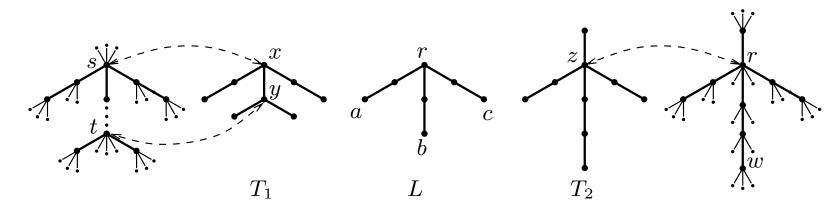
A minimal lobster argument gives the next theorem:

- Proof idea:
 - $ightharpoonup T_1$ and T_2 are not caterpillars, radius-2 stars, or degree-3 spiders
 - ightharpoonup A graph that is not a caterpillar has a minimal lobster L.



A minimal lobster argument gives the next theorem:

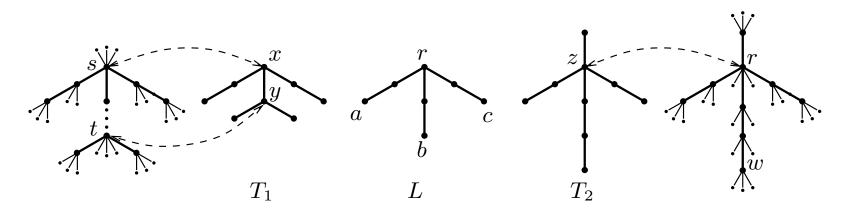
- Proof idea:
 - $ightharpoonup T_1$ and T_2 are not caterpillars, radius-2 stars, or degree-3 spiders
 - ightharpoonup A graph that is not a caterpillar has a minimal lobster L.
 - ► A graph that is not a degree-3 spider has two cases



A minimal lobster argument gives the next theorem:

Theorem 7 Every tree either contains a subdivision of T_1 or T_2 in which case it is not ULP, or it is a caterpillar, a radius-2 star, or a 3 spider in which case it is ULP.

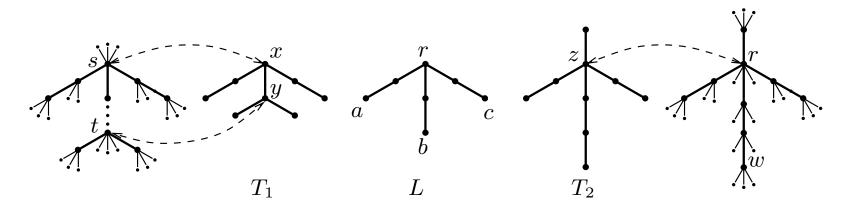
- $ightharpoonup T_1$ and T_2 are not caterpillars, radius-2 stars, or degree-3 spiders
- ightharpoonup A graph that is not a caterpillar has a minimal lobster L.
- ► A graph that is not a degree-3 spider has two cases
 - lacktriangle Has at least two vertices of degree-3–contains T_1



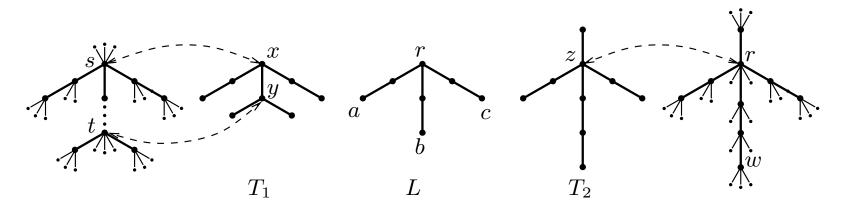
A minimal lobster argument gives the next theorem:

Theorem 7 Every tree either contains a subdivision of T_1 or T_2 in which case it is not ULP, or it is a caterpillar, a radius-2 star, or a 3 spider in which case it is ULP.

- $ightharpoonup T_1$ and T_2 are not caterpillars, radius-2 stars, or degree-3 spiders
- ightharpoonup A graph that is not a caterpillar has a minimal lobster L.
- ► A graph that is not a degree-3 spider has two cases
 - lacktriangle Has at least two vertices of degree-3–contains T_1
 - lacktriangle Has at least one vertex of degree-4–contains T_2

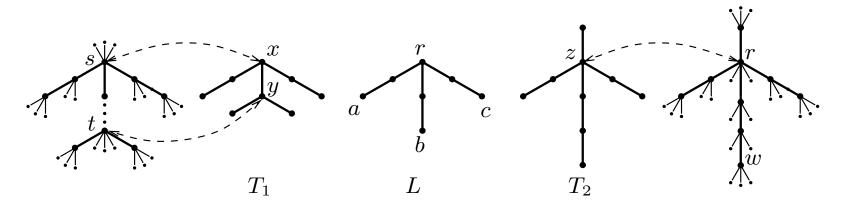


■ The final corollary is a consequence of Theorem 7 and properties of degree sequences of caterpillars, radius-2 stars, and degree-3 spiders (Lemmas 8, 9, 10, resp.):



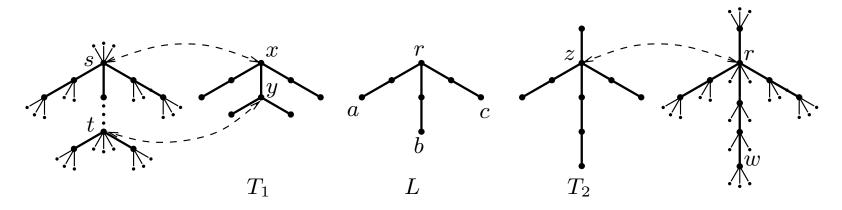
■ The final corollary is a consequence of Theorem 7 and properties of degree sequences of caterpillars, radius-2 stars, and degree-3 spiders (Lemmas 8, 9, 10, resp.):

Corollary 11 The class of ULP trees can be recognized in linear time.



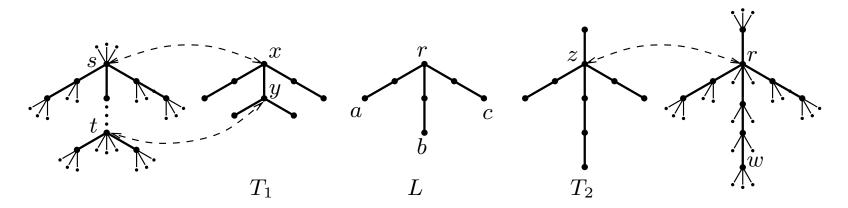
■ The final corollary is a consequence of Theorem 7 and properties of degree sequences of caterpillars, radius-2 stars, and degree-3 spiders (Lemmas 8, 9, 10, resp.):

- Proof idea:
 - First check the degree sequence to see if the graph is a degree-3 spider



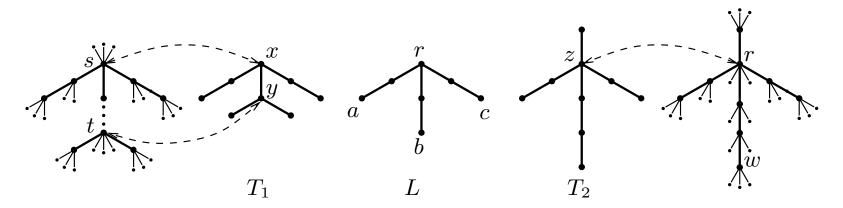
■ The final corollary is a consequence of Theorem 7 and properties of degree sequences of caterpillars, radius-2 stars, and degree-3 spiders (Lemmas 8, 9, 10, resp.):

- Proof idea:
 - First check the degree sequence to see if the graph is a degree-3 spider
 - ► Else strip off degree-1 vertices to see if the remaining graph is a



■ The final corollary is a consequence of Theorem 7 and properties of degree sequences of caterpillars, radius-2 stars, and degree-3 spiders (Lemmas 8, 9, 10, resp.):

- Proof idea:
 - First check the degree sequence to see if the graph is a degree-3 spider
 - Else strip off degree-1 vertices to see if the remaining graph is a
 - ◆ Path in which case it is a caterpillar



■ The final corollary is a consequence of Theorem 7 and properties of degree sequences of caterpillars, radius-2 stars, and degree-3 spiders (Lemmas 8, 9, 10, resp.):

- Proof idea:
 - ► First check the degree sequence to see if the graph is a degree-3 spider
 - Else strip off degree-1 vertices to see if the remaining graph is a
 - ◆ Path in which case it is a caterpillar
 - ♦ **Star** in which case it is a radius-2 star

Future Work

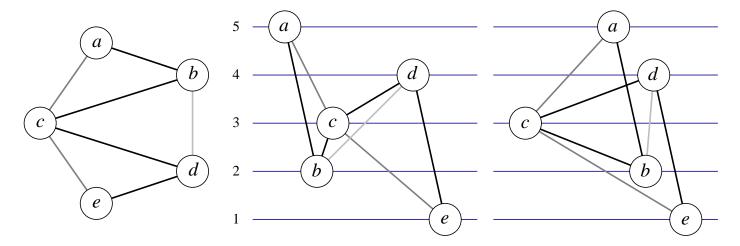
- Provide certificate of unlabeled level non-planarity
 - \blacktriangleright I.e., find copy of T_1 or T_2

- Provide certificate of unlabeled level non-planarity
 - ▶ I.e., find copy of T_1 or T_2
- Provide similar characterization of all graphs

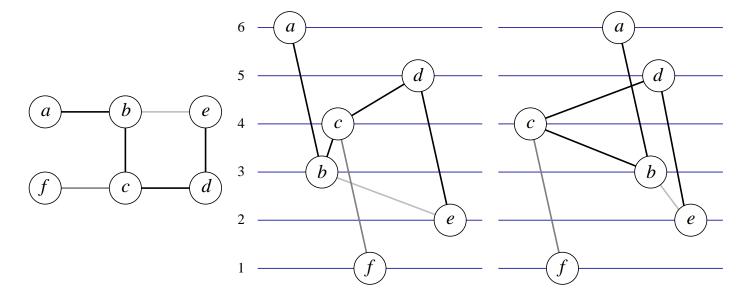
- Provide certificate of unlabeled level non-planarity
 - ▶ I.e., find copy of T_1 or T_2
- Provide similar characterization of all graphs
- Also provide recognition algorithm for all graphs

■ There are five forbidden ULP subdivisions with cycles

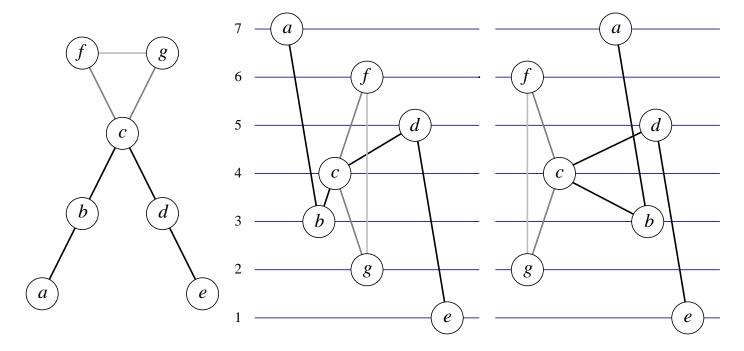
- There are five forbidden ULP subdivisions with cycles
 - ► First has 5 vertices and two degree 4 vertices



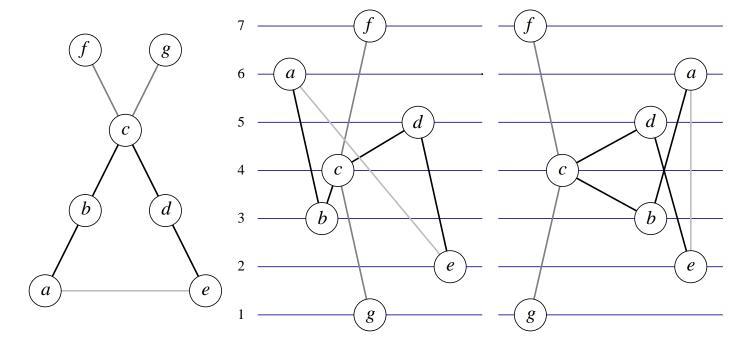
- There are five forbidden ULP subdivisions with cycles
 - Second has 6 vertices and one 4-cycle



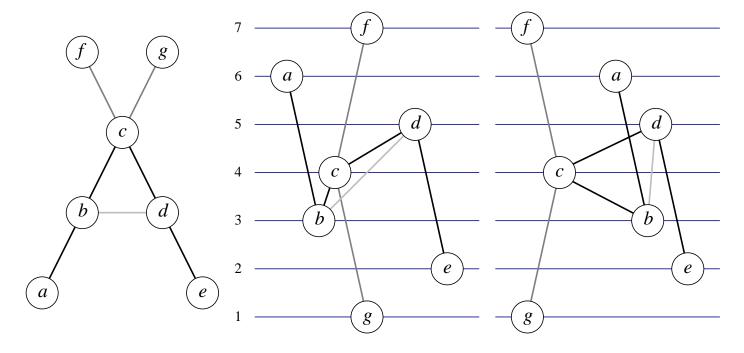
- There are five forbidden ULP subdivisions with cycles
 - ► Third has 7 vertices and one 3-cycle and one degree 4 vertex



- There are five forbidden ULP subdivisions with cycles
 - ► Fourth has 7 vertices and one 5-cycle and one degree 4 vertex



- There are five forbidden ULP subdivisions with cycles
 - ► Third has 7 vertices and one 3-cycle and one degree 4 vertex and two degree 3 vertices



YOU!