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» (5 can be drawn in the plane without crossings
¢ Edges can have curves or only be straight-line edges
¢ Equivalent in that if a drawing of (G with curved edges exist, then so does a
straight-line drawing of G exists

» Contains no copy of K5 or K3 3—Kuratowski's Theorem

Subdivided Kj Subdivided K3 3
¢ l.e., (G does not contain a subgraph that is a subdivision of K5 or K3,3

B Have developed similar forbidden subdivision characterization for ULP trees
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3-Level Graph Not a 3—-Level Graph
B A k-level graph G(V, E, ¢)
» Has n vertices where n > k

» Edges are drawn with straight-line segments
> Has alevel assignment ¢ : V' — [1..k]

® Assigns each vertex to one of k£ equidistant horizontal levels

4 Cannot have an edge between two vertices on same level

¢ le, (u,v) € E= ¢(u) # o(v)
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B A k-level graph G(V7 E, ¢)
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Has n vertices where n > k
Edges are drawn with straight-line segments

Has a level assignment ¢ : V' — [1..k]

® Assigns each vertex to one of k£ equidistant horizontal levels

4 Cannot have an edge between two vertices on same level

¢ le, (u,v) € E= ¢(u) # o(v)

Is level planar if there exists a plane drawing of GG provided the y-coordinate
of each v € V' is ¢(v)

¢ Placement of each vertex is restricted to its assigned level
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3-Level Graph Not a 3—-Level Graph

B A k-level graph G(V7 E, ¢)

>
>
>

Has n vertices where n > k

Edges are drawn with straight-line segments

Has a level assignment ¢ : V' — [1..k]

® Assigns each vertex to one of k£ equidistant horizontal levels

4 Cannot have an edge between two vertices on same level

¢ le, (u,v) € E= ¢(u) # o(v)

Is level planar if there exists a plane drawing of GG provided the y-coordinate
of each v € V' is ¢(v)

¢ Placement of each vertex is restricted to its assigned level

Such a plane drawing forms a realization of G
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B Useful in visualizing hierarchical models and relationships
» Many natural examples of hierarchies

4 Biological taxonomies
¢ Software engineering drawings, e.g. flow charts
¢ Social networks
» Hierarchies are level graphs
4 Have a single source vertex on level 1
¢ All the edges are directed from higher to lower levels
¢ There exists a monotonic path from the source to every other vertex

» Any directed acyclic graph DAG can be visualized as a hierarchy

B Application within automated graph drawing

» Sugiyama'’s algorithm draws DAG's in a top-down manner

¢ Assigns compatible sets of vertices to the same rank or level
» Often the desire is to use as few levels as possible

» Finding a k-level assignment for which a graph is level planar is NP-hard
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] O(n) time recognition, embedding and drawing algorithms for level graphs
» Jinger, Leipert, and Mutzel gave a linear time recognition algorithm at GD’98

4 Based on the level planarity test by Heath and Pemmaraju at GD’96
¢ Extends PQ-tree planarity test of hierarchies by Di Battista and Nardelli in 1988
» Junger and Leipert achieved linear time level planar embedding at GD’99
¢ Outputs a set of linear orderings of the vertices on each level
» Eades, Feng, Lin, and Nagamochi Jinger and Leipert devised a straight-line
level planar drawing algorithm if the input level graph is level planar
¢ Initially ran in O(|V|?) time in 1997, improved to O(|V']) time in 2006

B Characterizations of level graphs
» Di Battista and Nardelli provided a characterization of hierarchies in 1988

¢ Uses level non-planar (LNP) patterns
» Healy, Kuusik, and Leipert found minimal LNP subgraph patterns at CC’00

¢ Patterns analogous to Kuratowski’s subgraphs of regular planar graphs

» All these characterizations are for a single level assignment
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B Application with simultaneous embedding

» Embedding of multiple planar graphs onto the same vertex set
¢ Has to work for any vertex mapping between graphs
¢ Desire straight-line edges

¢ No crossings allowed within each planar layer

» Can simultaneously embed a path P with any ULP graph G
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B Characterization of ULP trees by two forbidden subdivisions

» Tree 17 with 8 vertices and two nodes of degree 3

» Tree I5 with 9 vertices and one node of degree 4
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B All ULP trees fall into one of three categories:

» Caterpillars ®

» Radius-2 stars .j\'

» Degree-3 spiders
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B More restrictive than standard planarity
» All level planar graphs are planar
» But not all planar graphs are level planar for a given level assignment

B A ULP graph can have a non-level planar assignment
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B For an n-level graph G(V, E, ¢)

>
>

A chain C'is a path v{—vg— - - —v; in the underlying undirected graph
<y denotes the linear ordering of V" induced by ¢

¢ u<yv < ¢(u) < ¢(v) <= wulies below v

< x denotes the linear ordering of V' induced by the x-coordinates of a level
drawing of G

¢ u<xv <= uliestotherightof v

Both <x and <y can be extended to compare a vertex with a chain C

¢ u<xUVI—U2— - —Uj

<= wu lies to the right of every point at which C intersects level ¢(u)
¢ u<yvi—vog—--- —V;

<— u lies below every point that C' shares the same x-coordinate as u
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» Then either
® a—-b<xc<xd—eor

¢ d—e<xc<xa—b,ie, cisbetweena—bandd—e

» Since otherwise ¢c—b—a will cross c—d—e

B So c cannot be leftmost or rightmost without forcing a crossing
» Can use this property to prove 17 and 75 are not ULP
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» Can assume without loss of generality that
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» AND one can also assume that
® a-b<xc<xh—tsincca<yh<yc<yb<y1
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» However, this implies that e <y g—c—h—1

4 In which case e— f crosses g—c—h—1




B Existence of labelings in which 7} and 15 are not level planar gives the
following lemma:

Lemma 1 There exist labelings that prevent 77 and 15 from being level planar.




B Existence of labelings in which 7} and 15 are not level planar gives the
following lemma:

Lemma 1 There exist labelings that prevent 77 and 15 from being level planar.

B Considering subdivisions gives the next corollary:

Corollary 2 Ifatree T'(V, ) contains a subdivision of T} or T%, then it cannot

be unlabeled level planar.




B Existence of labelings in which 7} and 15 are not level planar gives the
following lemma:

Lemma 1 There exist labelings that prevent 77 and 15 from being level planar.

B Considering subdivisions gives the next corollary:

Corollary 2 Ifatree T'(V, ) contains a subdivision of T} or T%, then it cannot

be unlabeled level planar.

B Proof idea:
» Assign intermediate levels to vertices of subdivided edges
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B An n-level realization of a caterpillar in linear time gives the next lemma:

Lemma 3 (Brass et al., 2003) An n-vertex caterpillar T'(V, E/) with an m-vertex

spine can be n-level realized in O(n) time on a 2m X n grid for any vertex
1:1
labelingp : V — {1, 2, ..., n}.

onto
B Proof idea:
» Embed spine vertices left to right on even x-coordinates

» Then embed adjacent leaf vertices directly to the right one unit on odd

x-coordinates

¢ |If a leaf vertex would lie on an edge, embed it directly below its spine vertex

4 Can only happen for at most one leaf vertex per spine edge
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Lemma 4 An n-vertex radius-2 star T'(V, E/) can be n-level realized in O(n)

time on a (2n + 3) X n grid for any vertex labeling ¢ : V % {1,2, ..., n}.
B Proof idea:
» Embed root vertex in middle of the x-coordinates
» Then embed adjacent vertices that have a leaf vertex below to the left,
otherwise to the right
>

Embed leaf vertices so that their incident edge segment has a slope of 1

¢ Use imaginary levels above and below to determine x-coordinate




B An n-level realization of a radius-2 star in linear time yields the next lemma:

Lemma 4 An n-vertex radius-2 star T'(V, E/) can be n-level realized in O(n)

: : : 1:1
time on a (2n 4+ 3) X n grid for any vertex labeling ¢ : V. —— {1, 2, ..., n}.
onto
._________.--._________.-_.____;Z{i_:,'\“‘______",_,'_';'_':-~.1.,_~_‘_______.--_________-.___
':#' i T .
SN
cqt [ ¢
B\ Wt
o\ /P
/|
A\
- y
A
i\




B An n-level realization of a radius-2 star in linear time yields the next lemma:

Lemma 4 An n-vertex radius-2 star T'(V, E/) can be n-level realized in O(n)

: : : 1:1
time on a (2n 4+ 3) X n grid for any vertex labeling ¢ : V. —— {1, 2, ..., n}.
onto
---—-——--------—-——-—--------——;Zdj-:.",“---——-",-f'--;--:-'ﬂ-.-:‘—-——-------—-——-—-----b—
q | .-"‘:"’ L/ .,‘
,1 //
SN . 7
cqt [ ¢
\\ fah %
[ 7
v
YA
L\
; |
' -\:
|




B An n-level realization of a radius-2 star in linear time yields the next lemma:

Lemma 4 An n-vertex radius-2 star T'(V, E/) can be n-level realized in O(n)

: : : 1:1
time on a (2n 4+ 3) X n grid for any vertex labeling ¢ : V. —— {1, 2, ..., n}.

onto

---—-——--------—-——-—--------——;Z dj-:",---——-",-f'--;--:-'ﬂ-.-:—-——-------—-—b—-----b—
APRRE L
,1 2
f ! . / d
1 ¢ 7/
\ /o ,
I’ ' //

EREN %




B An n-level realization of a radius-2 star in linear time yields the next lemma:

Lemma 4 An n-vertex radius-2 star T'(V, E/) can be n-level realized in O(n)

: : : 1:1
time on a (2n 4+ 3) X n grid for any vertex labeling ¢ : V. —— {1, 2, ..., n}.
onto
; : [0t ; 7
-:. :',.‘;- .“‘ // //
SN . ’ 7
ot 1 /
"\ /o ,
o\ /P T
T 2
v
[\
5
e
: e
, . A
7 \
N A 3 O X O A B N B




B An n-level realization of a radius-2 star in linear time yields the next lemma:

Lemma 4 An n-vertex radius-2 star T'(V, E/) can be n-level realized in O(n)

: : : 1:1
time on a (2n 4+ 3) X n grid for any vertex labeling ¢ : V. —— {1, 2, ..., n}.

onto

:"‘ 3 L /U ‘., /// 4
P ANl 2
f ! : / d
I ¢ 7/
\\ /o ;
I’ ' //

KRN %




B An n-level realization of a radius-2 star in linear time yields the next lemma

Lemma 4 An n-vertex radius-2 star T'(V, E/) can be n-level realized in O(n)

time on a (2n + 3) X n grid for any vertex labeling ¢ : V

1:1

— {1, 2, ..., n}.
onto
g ". :“' | / / g
. 1 i
SN 4
ot 1 /
\\ fob . ,
. I:’:-“ ,
. ¢ . Ve
S L
{|
[
:
.“', ‘
’ \ T \
, / . A
4 d A
7 1
._~./. ‘"
OO - IO TG e A -




B An n-level realization of a radius-2 star in linear time yields the next lemma

Lemma 4 An n-vertex radius-2 star T'(V, E/) can be n-level realized in O(n)

time on a (2n + 3) X n grid for any vertex labeling ¢ : V

1:1

— {1, 2, ..., n}.
onto
* [, RN : 7
R i ’ 7
' 7 ¢ / Ve
| / %
\\ / . ,
I' /
Ve
s s /
:I /
/|
[:
|
‘ \
Z R \
, / . A
1 /] 1
/ i
el 7 \
L At @
L R e L B e o B N R




B An n-level realization of a radius-2 star in linear time yields the next lemma

Lemma 4 An n-vertex radius-2 star T'(V, E/) can be n-level realized in O(n)

time on a (2n + 3) X n grid for any vertex labeling ¢ : V

1:1

H{1’ 2, ."’ n}l
onto
‘-' . [, 711 B 7
. / /
P 2 ’
J o ’ 7
7 ¢ / Ve
| ’ %
\\ /& . ,
I. | Ve
2
‘a Ve
[} 7
/|
[
|
'd \
’ \
, / A
1 /] 1
/ i
el 7 \
0107 - GO O T T O e A e




B An n-level realization of a degree-3 spider in linear time gives the
subsequent lemma:




B An n-level realization of a degree-3 spider in linear time gives the
subsequent lemma:

Lemma 5 An n-vertex degree-3 spider T'(V, ) can be n-level realized in O(n)

: : 1:1
time for any vertex labeling ¢ : V — {1, 2, ..., n}.
onto




B An n-level realization of a degree-3 spider in linear time gives the
subsequent lemma:

Lemma 5 An n-vertex degree-3 spider T'(V, ) can be n-level realized in O(n)

: : 1:1
time for any vertex labeling ¢ : V — {1, 2, ..., n}.
onto

B Proof idea:;

» First transform the degree-3 spider into a strictly expanding one




B An n-level realization of a degree-3 spider in linear time gives the
subsequent lemma:

Lemma 5 An n-vertex degree-3 spider T'(V, ) can be n-level realized in O(n)

: : 1:1
time for any vertex labeling ¢ : V — {1, 2, ..., n}.
onto

B Proof idea:;

» First transform the degree-3 spider into a strictly expanding one

» Then greedily draw the strictly expanding degree-3 spider starting from the

root vertex and selecting the chain that has the least visibility until either




B An n-level realization of a degree-3 spider in linear time gives the
subsequent lemma:

Lemma5 An n-vertex degree-3 spider T(V, E) can be n-level realized in O(n)
time for any vertex labeling ¢ : V —> {1, 2 nt.

B Proof idea:
» First transform the degree-3 spider into a strictly expanding one
» Then greedily draw the strictly expanding degree-3 spider starting from the

root vertex and selecting the chain that has the least visibility until either

¢ A new minimum or maximum vertex is obtained oR




B An n-level realization of a degree-3 spider in linear time gives the
subsequent lemma:

Lemma5 An n-vertex degree-3 spider T(V, E) can be n-level realized in O(n)
time for any vertex labeling ¢ : V —> {1, 2 nt.

B Proof idea:
» First transform the degree-3 spider into a strictly expanding one
» Then greedily draw the strictly expanding degree-3 spider starting from the

root vertex and selecting the chain that has the least visibility until either

¢ A new minimum or maximum vertex is obtained oR

4 The end of the chain is reached
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Ty L 1>
B Brute force consideration of the removal of edges from 713 and 75 gives the
following lemma:

Lemma 6 Removing any edge from I} or I5 yields a forest of ULP trees.
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B A minimal lobster argument gives the next theorem:

Theorem 7 Every tree either contains a subdivision of 17 or I5 in which case it is

not ULP, or it is a caterpillar, a radius-2 star, or a 3 spider in which case it is ULP.
B Proof idea:

» [’} and I5 are not caterpillars, radius-2 stars, or degree-3 spiders
» A graph that is not a caterpillar has a minimal lobster L.

» A graph that is not a degree-3 spider has two cases
4 Has at least two vertices of degree-3—contains 1]

4 Has at least one vertex of degree-4—contains 75
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(Lemmas 8, 9, 10, resp.):

Corollary 11 The class of ULP trees can be recognized in linear time.
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B The final corollary is a consequence of Theorem 7 and properties of

degree sequences of caterpillars, radius-2 stars, and degree-3 spiders
(Lemmas 8, 9, 10, resp.):

Corollary 11 The class of ULP trees can be recognized in linear time.

B Proof idea:;

» First check the degree sequence to see if the graph is a degree-3 spider
» Else strip off degree-1 vertices to see if the remaining graph is a
¢ Path in which case it is a caterpillar

¢ Star in which case it is a radius-2 star
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B Provide certificate of unlabeled level non-planarity
» |.e., find copy of 17 or 15

B Provide similar characterization of all graphs

B Also provide recognition algorithm for all graphs




B There are five forbidden ULP subdivisions with cycles




B There are five forbidden ULP subdivisions with cycles
» First has 5 vertices and two degree 4 vertices




B There are five forbidden ULP subdivisions with cycles
» Second has 6 vertices and one 4-cycle
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B There are five forbidden ULP subdivisions with cycles
» Third has 7 vertices and one 3-cycle and one degree 4 vertex
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B There are five forbidden ULP subdivisions with cycles
» Fourth has 7 vertices and one 5-cycle and one degree 4 vertex
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B There are five forbidden ULP subdivisions with cycles
» Third has 7 vertices and one 3-cycle and one degree 4 vertex and two degree

3 vertices
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