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Abstract. Minimum level nonplanar (MLNP) patterns play the role for
level planar graphs that the forbidden Kuratowksi subdivisions K5 and
K3 3 play for planar graphs. We add two MLNP patterns for trees to the
previous set of tree patterns given by Healy et al. [4]. Neither of these
patterns match any of the previous patterns. We show that this new set
of patterns completely characterizes level planar trees.

1 Introduction

Level graphs model hierarchical relationships. A level drawing has all vertices in
the same level with the same y-coordinates and has all edges strictly y-monotone.
Level planar graphs have level drawings without edge crossings. Hierarchies are
special cases in which every vertex is reachable via a y-monotone path from a
source in the top level. Planar graphs are characterized by forbidden subdivisions
of K5 and K3 3 by Kuratowksi’s Theorem [5]. The counterpart of this character-
ization for level planar graphs proposed by Healy, Kuusik, and Liepert [4] are
the minimum level nonplanar (MLNP) patterns. These are minimal obstructing
subgraphs with a set of level assignments that force one or more crossings.

Di Battista and Nardelli [1] provided three level nonplanar patterns for hier-
archies (HLNP patterns); cf. Fig. 2. Healy et al. adapted these HLNP patterns
to MLNP patterns for level graphs. However, the completeness of their charac-
terization was based on the claim that all MLNP patterns must contain a HLNP
pattern. We provide a counterexample to this claim based on the level nonplanar
assignment for the forbidden tree Ty used by Estrella et al. [2] to characterize
the set of unlabeled level planar (ULP) trees; cf. Fig. 1. Healy et al. provide
two of the MLNP patterns, P; and P», for trees that are also HLNP patterns;
cf. Fig. 3(a) and (b). We provide two more MLNP patterns, P; and Py for level
nonplanar trees; cf. Fig. 3(c) and (d) using our counterexample.
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Fig. 1. Labelings preventing the forbidden ULP trees Ts and Ty from being level planar.
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2 Preliminaries

A k-level graph G(V, E, ¢) on n vertices has leveling ¢ : V' — [1..k] where every
(u,v) € E either has ¢(u) < ¢(v) if G is directed or ¢(u) # ¢(v) if G is
undirected. This leveling partitions V into V3 U Vo U --- U V), where the level
V;=¢7(j) and V; N V; = @ if i # j. A proper level graph only has short edges
in which ¢(v) = ¢(u) + 1 for every (u,v) € E. Edges spanning multiple levels
are long. A hierarchy is a proper level graph in which every vertex v € V; for
j > 1 has at least one incident edge (u,v) € E to a vertex u € V; for some i < j.

A path p is a non-repeating ordered sequence of vertices (vy,vs,...,v;) for
t > 1. Let MIN(p) = min{¢(v) : v € p}, MAX(p) = max{¢(v) : v € p}, and
P(i,j) = {p : p is a path where i < MIN(p) < MAX(p) < j} are the paths
between levels V; and V;. A linking path, or link, L € L(i,j) is a path  ~» y in
which ¢ = MIN(L) = ¢(x) and MAX(L) = ¢(y) = j, and L(4,5) C P(4,j) are all
paths linking the extreme levels V; and V;. A bridge b is a path x ~» y in P(4, j)
connecting links Ly, Lo € L(i,7) in which bN Ly =x and bN Ly = y.

A level drawing of G has all of its level-j vertices in the j* level V; placed
along the track ¢; = {(x,k — j)|= € R}, and each edge (u,v) € E is drawn
as a continuous strictly y-monotone sequence of line segments. A level drawing
drawn without edge crossings shows that G is level planar. A pattern is a set
of level nonplanar graphs sharing structural similarities. Removing any edge
from the underlying graph matching a minimum level nonplanar (MLNP) pattern
gives a level planar graph. A hierarchy level nonplanar (HLNP) pattern is a
level nonplanar pattern in which every matching graph is a hierarchy. The next
theorem gives the set of the three distinct HLNP patterns.

Theorem 1 [Di Battista and Nardelli [1]] A hierarchy G(V, E,¢) on k levels

is level planar if and only if there does not exist three paths L1, Lo, Ls € L(i, )

linking levels V; and V; for 1 <i < j < k where one of the following hold:

(Pa) L1, Lo, and L3 are completely disjoint and pairwise connected by bridges
b1,b2,b3 where by N Lo =bo N L1 =b3NLy = 9; Cf. Fig. 2(@)

(Pg) L1 and Lo share a path C = Ly N Ly from p € V; UV, where Ly N Ly =
Lo N Ly = @ are connected by bridges by from Ly to Ls and by from Ly to
L3 such that by N Ly =bos N Ly = &; ¢f. Fig. 2(b).

(Pc) L1 and Lo share a path C1 = L1 N Ly from p € V; and Lo and L3 share a
path Co = Lo N Ly from q € V; such that C; N Cy = &. Bridge b connects
Ly and L3z where bN Ly =bNCy =bNCy = &; ¢f. Fig. 2(c).

(b)

Fig. 2. The three patterns characterizing hierarchies.



3 MLNP Patterns for Trees

Theorem 2 A level tree T(V, E, ¢) on k levels is minimum level nonplanar if
(1) there are three disjoint paths Ly, Lo, L3 € L(i,7) for 1 <i < j <k where Pa
of Theorem 1 applies and the union of the three bridges by Uby Ubs forms a
subdivided K1 3 subtree S with vertex c of degree 3 where either
(P1) ceV; (orV;) and there is a leaf of S in 'V} (or V;) as in Fig. 3(a) or
(Py) one leaf of S is in V; and another leaf of S is in V; as in Fig. 3(b), or
(2) there are four paths Ly, Lo, L3, Ly € L(i,7) for 1 <i < j <k where L1NLy =
@, LiNLy € Vj (orV;) and LsNLy € V; (or V;) where L1 ULg and L3 U Ly
form paths with both endpoints in V; and V; (or V; and V;), resp., and there
exist levels Vi and V,, for some i < 1 < m < j in which either Ly or L3
consists of subpaths Cy € L(i,m), Ca€ L(I,m), and C3€ L(l,j) where either
(P3) LoN Ly =x where l < ¢(x) < m as in Fig. 3(c), or
(Py) LaN L3 is path x ~ y where | < {é(x),d(y)} <m and Ly =c ~> x ~~
y ~> b where c € V; (or V;) and b € V; (or V;) as in Fig. 3(d).
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Fig. 3. Four MLNP patterns for trees.
Proof. Py and P, are MLNP given they match T1 and T2 of Healy et al. The
argument in [2] used by Estrella et al. to show Ty is level nonplanar generalizes
for P; and Py. To see that Ps is minimal (P is similar), we try the seven distinct
ways of removing an edge; cf. Fig. 4. In each case crossings can be avoided. 0O

Fig. 4. The seven cases of deleting an edge from pattern Ps in (a).



Contains P,
between V; and V;

Contains P
between V; and V}

() (b)
Fig. 5. Augmenting Ps in (a) from above (b) and below (c) to form hierarchies.
The proof of Theorem 15 of Healy et al. [4] argues that every MLNP pattern
must match some HLNP pattern. We show why this argument fails for Ps.
Lemma 3 P3 augmented to form a hierarchy has a subtree matching Ps.
Proof. Fig. 5 shows the highlighted subtrees that match P, when P; is aug-
mented to form a hierarchy. However, P> does not match P; by Theorem 2. O

The next lemma gives the minimal conditions for a MLNP tree pattern.
Lemma 4 A level nonplanar tree T(V, E,¢) on k levels contains three disjoint
paths L1, Lo, Ly € L(3, ) linking levels V; and V; for 1 <i < j <k with bridges
by from Ly to Lo and bs from Lo to Ls with x = by N Lo and y = bo N Ly so that
either (Po) x =y, (P3) La=c~y~ax~d, or (Py) La=c~x~y~d
hold where ¢ € V; and d € V} as in Fig. 6(a), (b), (c).
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Fig. 6. Minimal patterns for Lemma 4.

Proof. Assume that P is an MLNP pattern between levels V; and V; in which
|¢ — j| is minimum and there are at most two disjoint paths L1, Lo € L(i,7).
There could be at most one bridge b joining L, and Ly without forming a cycle.
Let w be the endpoint of b in L. Let P’ be P — (u,v) where (u,v) is the short
edge connecting L; to Vj in which v € Vj. In order for P to be MLNP, there
must exist two linking paths py,ps € L(4,5) in P’ with endpoints z, z € V; and
common endpoint y € V; such that for any level planar embedding of P’, u is
contained in the region bounded by p1, p2 and the track ¢;; cf. Fig. 6(d). Assume
w.l.o.g. that Ly is ps. In order for p; not to be embeddable on the other side
of p2 (allowing edge (u,v) to be drawn in P without crossing), there must be a
path ps from s in Ly to ¢t € V; in which s lies between z and w blocking this
direction. Then there are at least three disjoint paths in P in £(4,5): p1, L1 and
the path z ~» s ~» ¢, contradicting our assumption of there only being two.



Let L1, Lo, L € L(i, 7) be three disjoint paths. At least one of the three paths,
say it is Lo, must be joined by bridges b; and by to the other two paths Ly or Ls,
respectively, or P would be disconnected contradicting the minimality of P. If
b1 Nby form a nonempty path, then b1 Ubs would form a subtree homeomorphic
to K 3, yielding pattern P; or P, of Theorem 2. Thus, b; and by can share at
most one vertex as in P, of Fig. 6(a). Otherwise there must have been endpoints
x = by ULy and y = by U Ly along the path ¢ ~» d forming Lo where either y
proceeds x as in Pg of Fig. 6(b) or  proceeds y as in P, of Fig. 6(c). O

We next show that P, is easily derived from Pj.

Lemma 5 Py is the only distinct MLNP pattern for trees that can be formed
from Ps (by splitting the degree-4 vertex) not containing a subtree matching Ps.

Proof. Fig. 7 shows the three ways the degree-4 vertex of P3 can be split into
two degree-3 vertices. Two contain subtrees that match Ps. O

Contains Py Contains P,
between V; and V;,, between V; and V}

() (b)
Fig. 7. The three ways of splitting the degree-4 vertex of Ps into two vertices of degree 3

Finally we complete our characterization for level nonplanar trees.

Theorem 6 A level tree T is level nonplanar if and only if T has a subtree
matching one of the minimum level nonplanar patterns Py, Py, P3, or Pjy.
Proof Sketch: We sketch proof for the simplest case here; the full proof can be
found in [3]. Once a MLNP pattern P is augmented to form a hierarchy, one
of the HLNP patterns must apply. Since this augmentation does not introduce a
cycle between levels V; and Vj, either pattern P, or P, must match a subtree of
the augmented pattern by Lemma 5 of [4].

Assume there is a MLNP tree pattern P containing P, of Lemma 4 that does
not match P; or P». We consider the simplest case of how the bridges of P, in
P could spans levels between V; and V;. We augment P to form a hierarchy to
illustrate how either P must match P; or P, or contain a cycle.

Suppose that a bridge of P, in P is not strictly y-monotone. Then P could
either have a bend at e in level V; in one bridge or a bend at f in level V,,, in
the other as in Fig. 8(a) for some i < I < m < j. Each bend would require
augmentation to a path from the source when forming a hierarchy from above
or below as was the case with P; in Fig. 5.

We augment P with a path p ~ e from V; to V; to form P’, a hierarchy,
that must match P; or P,. We observe that between levels V; and V,,, we have
four linking paths. A third bridge u ~» v must be present in P’ that is part of
a subtree S homeomorphic to K 3. Fig. 8(b) gives one such example. While P’
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Fig. 8. Examples of pattern P, in (a) being augmented to form a hierarchy in (b) and (c).

matches P> between levels V; and V;,, we see that between levels V; and Vj, P
must have had the cycle u ~» v ~» e ~» b ~» u, contradicting P being a tree
pattern. By inspection, any other placement of u ~» v to connect three of the
four linking paths to form P; or P, similarly implies a cycle in P.

Hence, P cannot contain any more edges than those of P, without matching
P, or P,. We observe that P, consists of two paths sharing a common vertex x.
Given the minimality of P in minimizing |i — j|, one path has both endpoints
in V; with one vertex in V; that can be split into linking paths L1, Ly € L(i, 7).
Similarly, the other has both endpoints in V; with one vertex in V; that can also
be split into the linking paths L3, Ly € L(4,7). In P3 of Fig. 8(a), L1 is a ~ b,
Loisb~e~ax~c, Lyisd~x~ f~>g,and Ly is g ~ h.

For P to be level nonplanar, a crossing must be forced between these two
paths. This is done by having Ls or L3 meet the condition of Ps of three subpaths
Cy € L(i,m) linking V; to V,,, Co € L(I,m) linking V} to V,,, and C5 € L(l,j)
linking V; to V. This is not the case for P, in Fig. 8(a) since the z ~- ¢ portion
of Ly does not reach level V,,,, and the & ~~ d portion of L3 does not reach level
Vi. So for P not to match Ps, at least one subpath of both Ly and L3 from z to
Vi or V; must strictly monotonic as was the case in Fig. 8(a). However, in this
case P can be drawn without crossings. This leaves P as the only possibility of
a MLNP pattern matching P, that does not match P; or Ps. O
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