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Abstract. Minimum level nonplanar (MLNP) patterns play the role for
level planar graphs that the forbidden Kuratowksi subdivisions K5 and
K3,3 play for planar graphs. We add two MLNP patterns for trees to the
previous set of tree patterns given by Healy et al. [4]. Neither of these
patterns match any of the previous patterns. We show that this new set
of patterns completely characterizes level planar trees.

1 Introduction

Level graphs model hierarchical relationships. A level drawing has all vertices in
the same level with the same y-coordinates and has all edges strictly y-monotone.
Level planar graphs have level drawings without edge crossings. Hierarchies are
special cases in which every vertex is reachable via a y-monotone path from a
source in the top level. Planar graphs are characterized by forbidden subdivisions
of K5 and K3,3 by Kuratowksi’s Theorem [5]. The counterpart of this character-
ization for level planar graphs proposed by Healy, Kuusik, and Liepert [4] are
the minimum level nonplanar (MLNP) patterns. These are minimal obstructing
subgraphs with a set of level assignments that force one or more crossings.

Di Battista and Nardelli [1] provided three level nonplanar patterns for hier-
archies (HLNP patterns); cf. Fig. 2. Healy et al. adapted these HLNP patterns
to MLNP patterns for level graphs. However, the completeness of their charac-
terization was based on the claim that all MLNP patterns must contain a HLNP

pattern. We provide a counterexample to this claim based on the level nonplanar
assignment for the forbidden tree T9 used by Estrella et al. [2] to characterize
the set of unlabeled level planar (ULP) trees; cf. Fig. 1. Healy et al. provide
two of the MLNP patterns, P1 and P2, for trees that are also HLNP patterns;
cf. Fig. 3(a) and (b). We provide two more MLNP patterns, P3 and P4 for level
nonplanar trees; cf. Fig. 3(c) and (d) using our counterexample.
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Fig. 1. Labelings preventing the forbidden ULP trees T8 and T9 from being level planar.
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2 Preliminaries

A k-level graph G(V, E, φ) on n vertices has leveling φ : V → [1..k] where every
(u, v) ∈ E either has φ(u) < φ(v) if G is directed or φ(u) 6= φ(v) if G is
undirected. This leveling partitions V into V1 ∪ V2 ∪ · · · ∪ Vk where the level
Vj = φ−1(j) and Vi ∩ Vj = ∅ if i 6= j. A proper level graph only has short edges
in which φ(v) = φ(u) + 1 for every (u, v) ∈ E. Edges spanning multiple levels
are long. A hierarchy is a proper level graph in which every vertex v ∈ Vj for
j > 1 has at least one incident edge (u, v) ∈ E to a vertex u ∈ Vi for some i < j.

A path p is a non-repeating ordered sequence of vertices (v1, v2, . . . , vt) for
t ≥ 1. Let min(p) = min{φ(v) : v ∈ p}, max(p) = max{φ(v) : v ∈ p}, and
P(i, j) =

{

p : p is a path where i ≤ min(p) < max(p) ≤ j
}

are the paths
between levels Vi and Vj . A linking path, or link, L ∈ L(i, j) is a path x y in
which i = min(L) = φ(x) and max(L) = φ(y) = j, and L(i, j) ⊆ P(i, j) are all
paths linking the extreme levels Vi and Vj . A bridge b is a path x y in P(i, j)
connecting links L1, L2 ∈ L(i, j) in which b ∩ L1 = x and b ∩ L2 = y.

A level drawing of G has all of its level-j vertices in the jth level Vj placed
along the track ℓj = {(x, k − j) |x ∈ R}, and each edge (u, v) ∈ E is drawn
as a continuous strictly y-monotone sequence of line segments. A level drawing
drawn without edge crossings shows that G is level planar. A pattern is a set
of level nonplanar graphs sharing structural similarities. Removing any edge
from the underlying graph matching a minimum level nonplanar (MLNP) pattern
gives a level planar graph. A hierarchy level nonplanar (HLNP) pattern is a
level nonplanar pattern in which every matching graph is a hierarchy. The next
theorem gives the set of the three distinct HLNP patterns.

Theorem 1 [Di Battista and Nardelli [1]] A hierarchy G(V, E, φ) on k levels
is level planar if and only if there does not exist three paths L1, L2, L3 ∈ L(i, j)
linking levels Vi and Vj for 1 ≤ i < j ≤ k where one of the following hold:
(PA) L1, L2, and L3 are completely disjoint and pairwise connected by bridges

b1, b2, b3 where b1 ∩ L2 = b2 ∩ L1 = b3 ∩ L1 = ∅; cf. Fig. 2(a).

(PB) L1 and L2 share a path C = L1 ∩ L2 from p ∈ Vi ∪ Vj where L1 ∩ L3 =
L2 ∩L3 = ∅ are connected by bridges b1 from L1 to L3 and b2 from L1 to
L3 such that b1 ∩ L2 = b2 ∩ L1 = ∅; cf. Fig. 2(b).

(PC) L1 and L2 share a path C1 = L1 ∩ L2 from p ∈ Vi and L2 and L3 share a
path C2 = L2 ∩ L3 from q ∈ Vj such that C1 ∩ C2 = ∅. Bridge b connects
L1 and L3 where b ∩ L2 = b ∩ C1 = b ∩ C2 = ∅; cf. Fig. 2(c).
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Fig. 2. The three patterns characterizing hierarchies.
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3 MLNP Patterns for Trees

Theorem 2 A level tree T (V, E, φ) on k levels is minimum level nonplanar if

(1) there are three disjoint paths L1, L2, L3 ∈ L(i, j) for 1 ≤ i < j ≤ k where PA

of Theorem 1 applies and the union of the three bridges b1 ∪ b2 ∪ b3 forms a
subdivided K1,3 subtree S with vertex c of degree 3 where either
(P1) c ∈ Vi (or Vj) and there is a leaf of S in Vj (or Vi) as in Fig. 3(a) or

(P2) one leaf of S is in Vi and another leaf of S is in Vj as in Fig. 3(b), or

(2) there are four paths L1, L2, L3, L4 ∈ L(i, j) for 1 ≤ i < j ≤ k where L1∩L4 =
∅, L1∩L2 ∈ Vj (or Vi) and L3∩L4 ∈ Vi (or Vj) where L1∪L2 and L3∪L4

form paths with both endpoints in Vi and Vj (or Vj and Vi), resp., and there
exist levels Vl and Vm for some i < l < m < j in which either L2 or L3

consists of subpaths C1∈L(i, m), C2∈L(l, m), and C3∈L(l, j) where either

(P3) L2 ∩ L3 = x where l ≤ φ(x) ≤ m as in Fig. 3(c), or

(P4) L2 ∩ L3 is path x y where l ≤ {φ(x), φ(y)} ≤ m and L2 = c x 

y  b where c ∈ Vi (or Vj) and b ∈ Vj (or Vi) as in Fig. 3(d).
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Fig. 3. Four MLNP patterns for trees.

Proof. P1 and P2 are MLNP given they match T1 and T2 of Healy et al. The
argument in [2] used by Estrella et al. to show T9 is level nonplanar generalizes
for P3 and P4. To see that P3 is minimal (P4 is similar), we try the seven distinct
ways of removing an edge; cf. Fig. 4. In each case crossings can be avoided. ⊓⊔
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Fig. 4. The seven cases of deleting an edge from pattern P3 in (a).
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The proof of Theorem 15 of Healy et al. [4] argues that every MLNP pattern
must match some HLNP pattern. We show why this argument fails for P3.

Lemma 3 P3 augmented to form a hierarchy has a subtree matching P2.

Proof. Fig. 5 shows the highlighted subtrees that match P2 when P3 is aug-
mented to form a hierarchy. However, P2 does not match P3 by Theorem 2. ⊓⊔

The next lemma gives the minimal conditions for a MLNP tree pattern.

Lemma 4 A level nonplanar tree T (V, E, φ) on k levels contains three disjoint
paths L1, L2, L3 ∈ L(i, j) linking levels Vi and Vj for 1 ≤ i < j ≤ k with bridges
b1 from L1 to L2 and b2 from L2 to L3 with x = b1 ∩L2 and y = b2 ∩L2 so that
either (Pα) x = y, (Pβ) L2 = c  y  x  d, or (Pγ) L2 = c  x  y  d

hold where c ∈ Vi and d ∈ Vj as in Fig. 6(a), (b), (c).
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Fig. 6. Minimal patterns for Lemma 4.

Proof. Assume that P is an MLNP pattern between levels Vi and Vj in which
|i − j| is minimum and there are at most two disjoint paths L1, L2 ∈ L(i, j).
There could be at most one bridge b joining L1 and L2 without forming a cycle.
Let w be the endpoint of b in L2. Let P ′ be P − (u, v) where (u, v) is the short
edge connecting L1 to Vj in which v ∈ Vj . In order for P to be MLNP, there
must exist two linking paths p1, p2 ∈ L(i, j) in P ′ with endpoints x, z ∈ Vi and
common endpoint y ∈ Vj such that for any level planar embedding of P ′, u is
contained in the region bounded by p1, p2 and the track ℓi; cf. Fig. 6(d). Assume
w.l.o.g. that L2 is p2. In order for p1 not to be embeddable on the other side
of p2 (allowing edge (u, v) to be drawn in P without crossing), there must be a
path p3 from s in L2 to t ∈ Vj in which s lies between z and w blocking this
direction. Then there are at least three disjoint paths in P in L(i, j): p1, L1 and
the path z  s t, contradicting our assumption of there only being two.
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Let L1, L2, L3 ∈ L(i, j) be three disjoint paths. At least one of the three paths,
say it is L2, must be joined by bridges b1 and b2 to the other two paths L1 or L3,
respectively, or P would be disconnected contradicting the minimality of P . If
b1 ∩ b2 form a nonempty path, then b1 ∪ b2 would form a subtree homeomorphic
to K1,3, yielding pattern P1 or P2 of Theorem 2. Thus, b1 and b2 can share at
most one vertex as in Pα of Fig. 6(a). Otherwise there must have been endpoints
x = b1 ∪ L2 and y = b2 ∪ L2 along the path c  d forming L2 where either y

proceeds x as in Pβ of Fig. 6(b) or x proceeds y as in Pγ of Fig. 6(c). ⊓⊔

We next show that P4 is easily derived from P3.

Lemma 5 P4 is the only distinct MLNP pattern for trees that can be formed
from P3 (by splitting the degree-4 vertex) not containing a subtree matching P2.

Proof. Fig. 7 shows the three ways the degree-4 vertex of P3 can be split into
two degree-3 vertices. Two contain subtrees that match P2. ⊓⊔
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Fig. 7. The three ways of splitting the degree-4 vertex of P3 into two vertices of degree 3

Finally we complete our characterization for level nonplanar trees.

Theorem 6 A level tree T is level nonplanar if and only if T has a subtree
matching one of the minimum level nonplanar patterns P1, P2, P3, or P4.
Proof Sketch: We sketch proof for the simplest case here; the full proof can be
found in [3]. Once a MLNP pattern P is augmented to form a hierarchy, one
of the HLNP patterns must apply. Since this augmentation does not introduce a
cycle between levels Vi and Vj , either pattern P1 or P2 must match a subtree of
the augmented pattern by Lemma 5 of [4].

Assume there is a MLNP tree pattern P containing Pα of Lemma 4 that does
not match P1 or P2. We consider the simplest case of how the bridges of Pα in
P could spans levels between Vi and Vj . We augment P to form a hierarchy to
illustrate how either P must match P1 or P2 or contain a cycle.

Suppose that a bridge of Pα in P is not strictly y-monotone. Then P could
either have a bend at e in level Vl in one bridge or a bend at f in level Vm in
the other as in Fig. 8(a) for some i < l < m < j. Each bend would require
augmentation to a path from the source when forming a hierarchy from above
or below as was the case with P3 in Fig. 5.

We augment P with a path p  e from Vi to Vl to form P ′, a hierarchy,
that must match P1 or P2. We observe that between levels Vi and Vm, we have
four linking paths. A third bridge u  v must be present in P ′ that is part of
a subtree S homeomorphic to K1,3. Fig. 8(b) gives one such example. While P ′
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matches P2 between levels Vi and Vm, we see that between levels Vi and Vj , P

must have had the cycle u  v  e  b  u, contradicting P being a tree
pattern. By inspection, any other placement of u  v to connect three of the
four linking paths to form P1 or P2 similarly implies a cycle in P .

Hence, P cannot contain any more edges than those of Pα without matching
P1 or P2. We observe that Pα consists of two paths sharing a common vertex x.
Given the minimality of P in minimizing |i − j|, one path has both endpoints
in Vi with one vertex in Vj that can be split into linking paths L1, L2 ∈ L(i, j).
Similarly, the other has both endpoints in Vj with one vertex in Vi that can also
be split into the linking paths L3, L4 ∈ L(i, j). In P3 of Fig. 8(a), L1 is a  b,
L2 is b e x c, L3 is d x f  g, and L4 is g  h.

For P to be level nonplanar, a crossing must be forced between these two
paths. This is done by having L2 or L3 meet the condition of P3 of three subpaths
C1 ∈ L(i, m) linking Vi to Vm, C2 ∈ L(l, m) linking Vl to Vm, and C3 ∈ L(l, j)
linking Vl to Vj . This is not the case for Pα in Fig. 8(a) since the x c portion
of L2 does not reach level Vm, and the x d portion of L3 does not reach level
Vl. So for P not to match P3, at least one subpath of both L2 and L3 from x to
Vi or Vj must strictly monotonic as was the case in Fig. 8(a). However, in this
case P can be drawn without crossings. This leaves P3 as the only possibility of
a MLNP pattern matching Pα that does not match P1 or P2. ⊓⊔
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