

Minimum Level Non-Planar Patterns for Trees

J. Joseph Fowler and Stephen G. Kobourov

Department of Computer Science, The University of Arizona

The 15th International Symposium on Graph Drawing (GD 2007)

Background

- Background
 - Motivation
 - Definitions
 - ► Previous Work

- Background
- Previous Patterns

- Background
- Previous Patterns
- New Patterns

- Background
 - Motivation
 - Definitions
 - Previous Work
- Previous Patterns
- New Patterns

Originally wanted to use patterns for ULP characterization

- Originally wanted to use patterns for ULP characterization
 - ► None of the ULP trees matched any of the existing patterns

- Originally wanted to use patterns for ULP characterization
 - ► None of the ULP trees matched any of the existing patterns
 - ♦ Good showed they were level planar

- Originally wanted to use patterns for ULP characterization
 - ► None of the ULP trees matched any of the existing patterns
 - $ightharpoonup T_8$ matched one of the exisiting patterns

- Originally wanted to use patterns for ULP characterization
 - ► None of the ULP trees matched any of the existing patterns
 - $ightharpoonup T_8$ matched one of the exisiting patterns
 - lacktriangle Good showed T_8 was level non-planar

- Originally wanted to use patterns for ULP characterization
 - ► None of the ULP trees matched any of the existing patterns
 - $ightharpoonup T_8$ matched one of the exisiting patterns
 - $ightharpoonup T_9$ did not match any of the exisiting patterns

- Originally wanted to use patterns for ULP characterization
 - ► None of the ULP trees matched any of the existing patterns
 - $ightharpoonup T_8$ matched one of the exisiting patterns
 - $ightharpoonup T_9$ did not match any of the exisiting patterns
 - lacktriangle Not good either T_9 was level planar (it's not) or the existing patterns were incomplete

lacktriangleq A k-level graph $G(V, E, \phi)$

- lacktriangleq A k-level graph $G(V, E, \phi)$
 - ▶ Has n vertices where $n \ge k$ with a *leveling* $\phi : V \to [1..k]$

- lacktriangleq A k-level graph $G(V, E, \phi)$
 - ▶ Has n vertices where $n \ge k$ with a leveling $\phi: V \to [1..k]$
 - ◆ Can have multiple vertices per level

- lacktriangleq A k-level graph $G(V, E, \phi)$
 - ▶ Has n vertices where $n \ge k$ with a *leveling* $\phi : V \to [1..k]$
 - ♦ Cannot have an edge between two vertices in same level

- lacktriangleq A k-level graph $G(V, E, \phi)$
 - ▶ Has n vertices where $n \ge k$ with a *leveling* $\phi : V \to [1..k]$
 - ► Edges are *y*-monotone

Proper Level Graph

- lacktriangleq A k-level graph $G(V, E, \phi)$
 - ▶ Has n vertices where $n \ge k$ with a *leveling* $\phi : V \to [1..k]$
 - ► Edges are *y*-monotone
 - ♦ *G* is *proper* if all edges are short spanning one level

- lacktriangle A k-level graph $G(V, E, \phi)$
 - ▶ Has n vertices where $n \ge k$ with a *leveling* $\phi : V \to [1..k]$
 - ► Edges are *y*-monotone
 - lacktriangle Otherwise G is *improper* with *long* edges

- lacktriangle A k-level graph $G(V, E, \phi)$
 - ▶ Has n vertices where $n \ge k$ with a *leveling* $\phi : V \to [1..k]$
 - ► Edges are *y*-monotone
 - ♦ Any level graph can be made proper by adding dummy vertices to long edges

Level Planar Graph

- lacktriangleq A k-level graph $G(V, E, \phi)$
 - ▶ Has n vertices where $n \ge k$ with a *leveling* $\phi : V \to [1..k]$
 - ► Edges are *y*-monotone
- lacksquare G is level planar if

- \blacksquare A k-level graph $G(V, E, \phi)$
 - ▶ Has n vertices where $n \ge k$ with a *leveling* $\phi : V \to [1..k]$
 - ► Edges are *y*-monotone
- lacksquare G is level planar if
 - lacktriangledown can be drawn without crossings and each vertex remains on its level

Hierarchies are proper level graphs

- Hierarchies are proper level graphs
 - ► All source vertices are in top level

- Hierarchies are proper level graphs
 - All source vertices are in top level
 - ♦ Exists a *y*-monotone path from the source to every other vertex

- Hierarchies are proper level graphs
 - All source vertices are in top level
 - ► All edges are directed from higher to lower levels

Previous Work

- lacksquare O(n) time algorithms for level graphs
 - ► Jünger, Leipert, and Mutzel gave a level planarity testing algorithm in 1998
 - Jünger and Leipert achieved level planar embedding in 1999
 - ► Eades, Feng, Lin, and Nagamochi devised a straight-line level planar drawing algorithm given an embedding in 1997
- Characterizations of level graphs
 - Di Battista and Nardelli characterized hierarchies in 1988
 - ► Healy, Kuusik, and Leipert found minimal LNP subgraph patterns in 2000

- Background
- Previous Patterns

- Background
- Previous Patterns
 - ► Hierarchy Patterns

- Background
- Previous Patterns
 - Hierarchy Patterns
 - ► Minimum Level Non-Planar (MLNP) Patterns

- Background
- Previous Patterns
 - ► Hierarchy Patterns
 - Minimum Level Non-Planar (MLNP) Patterns
 - ♦ Matches larger, more general class of level graphs

- Background
- Previous Patterns
 - Hierarchy Patterns
 - Minimum Level Non-Planar (MLNP) Patterns
 - Matches larger, more general class of level graphs
 - Minimal unlike hierarchy patterns

Hierarchy Patterns

Three patterns for hierarchies

Hierarchy Patterns

- Three patterns for hierarchies
 - Not necessarily minimal
 - lacktriangle May exist l,m such that $i \leq l < m \leq j$ and |l-m| < |i-j|

Hierarchy Patterns

- Three patterns for hierarchies
 - Not necessarily minimal
 - $ightharpoonup P_A$ consists of three disjoint linking paths and three pairwise bridges
 - ♦ Bridges do *not* share vertices with linking paths except at endpoints

Hierarchy Patterns

- Three patterns for hierarchies
 - Not necessarily minimal
 - $ightharpoonup P_A$ consists of three disjoint linking paths and three pairwise bridges
 - ♦ Bridges *can* share vertices with each other

Hierarchy Patterns

- Three patterns for hierarchies
 - Not necessarily minimal
 - $ightharpoonup P_A$ consists of three disjoint linking paths and three pairwise bridges
 - $ightharpoonup P_B$ and P_C are special cases of P_A

Minimum Level Non-Planar (MLNP) patterns are for more general class of level graphs

■ However we only consider more restricted class of level trees

lacktriangle Two patterns P_1 and P_2 previously given for trees

- lacktriangle Two patterns P_1 and P_2 previously given for trees
 - ► Healy *et al.* claimed these sufficient

- lacktriangle Two patterns P_1 and P_2 previously given for trees
 - ► Healy *et al.* claimed these sufficient
 - ightharpoonup Both are special cases of P_A

- lacktriangle Two patterns P_1 and P_2 previously given for trees
 - ► Healy *et al.* claimed these sufficient
 - ightharpoonup Both are special cases of P_A
 - \blacktriangleright Neither have degree-4 vertex—cannot match T_9

Two New MLNP Tree Patterns

lacktriangle Need two more patterns P_3 and P_4 based on T_9

lacktriangle Start with level non-planar leveling for T_8

- lacktriangle Start with level non-planar leveling for T_8
 - Add dummy vertices to levels 3 and 6

- lacktriangle Start with level non-planar leveling for T_8
 - Extract a proper subtree between levels 3 and 6

- lacktriangle Start with level non-planar leveling for T_8
 - Extract a proper subtree between levels 3 and 6
- Generalize into a pattern

lacktriangle Start with level non-planar leveling for T_9

- lacktriangle Start with level non-planar leveling for T_9
 - Add dummy vertices to levels 3 and 7

- lacktriangle Start with level non-planar leveling for T_9
 - Extract a proper subtree between levels 3 and 7

- lacktriangle Start with level non-planar leveling for T_9
 - Extract a proper subtree between levels 3 and 7
- Generalize into a pattern

 \blacksquare Start with MLNP pattern P_3

■ Split degree-4 vertex into two degree-3 vertices

- Split degree-4 vertex into two degree-3 vertices
 - ightharpoonup First way gives P_2 between V_l and V_m

- Split degree-4 vertex into two degree-3 vertices
 - lacktriangle First way gives P_2 between V_l and V_m
 - lacktriangle Second way gives P_2 between V_i and V_j

- Split degree-4 vertex into two degree-3 vertices
 - lacktriangle First way gives P_2 between V_l and V_m
 - lacktriangle Second way gives P_2 between V_i and V_j
 - ightharpoonup Third way gives P_4

- Background
- Previous Patterns
- New Patterns

- Background
- Previous Patterns
- New Patterns
 - ► Three things to prove

- Background
- Previous Patterns
- New Patterns
 - ► Three things to prove
 - Minimality

- Background
- Previous Patterns
- New Patterns
 - ► Three things to prove
 - Minimality
 - Necessity

- Background
- Previous Patterns
- New Patterns
 - ► Three things to prove
 - Minimality
 - Necessity
 - ♦ Sufficiency

- \blacksquare Start with MLNP pattern P_3
 - $ightharpoonup P_3$ has at least one crossing

- lacktriangle Next consider seven distinct ways of cutting an edge of P_3
 - ▶ Edge along $a \leadsto b$

- lacktriangle Next consider seven distinct ways of cutting an edge of P_3
 - ightharpoonup Edge along $b \leadsto x$

- lacktriangle Next consider seven distinct ways of cutting an edge of P_3
 - ightharpoonup Edge along $d \leadsto x$

- lacktriangle Next consider seven distinct ways of cutting an edge of P_3
 - ightharpoonup Edge along $x \leadsto c$

- lacktriangle Next consider seven distinct ways of cutting an edge of P_3
 - ightharpoonup Edge along $x \leadsto f$

- lacktriangle Next consider seven distinct ways of cutting an edge of P_3
 - ▶ Edge along $f \leadsto g$

- lacktriangle Next consider seven distinct ways of cutting an edge of P_3
 - ▶ Edge along $g \leadsto h$

- lacktriangle Next consider seven distinct ways of cutting an edge of P_3
 - All seven ways allow for a level planar embedding

lacktriangle Nonplanarity of P_3 same as argument for T_9

- lacktriangle Nonplanarity of P_3 same as argument for T_9
- \blacksquare Augmenting Pattern P_3 to Hierarchy

- lacktriangle Nonplanarity of P_3 same as argument for T_9
- \blacksquare Augmenting Pattern P_3 to Hierarchy
 - ightharpoonup Start with MLNP pattern P_3

- lacksquare Nonplanarity of P_3 same as argument for T_9
- \blacksquare Augmenting Pattern P_3 to Hierarchy
 - Augment to a hierarchy from above

- lacktriangle Nonplanarity of P_3 same as argument for T_9
- lacktriangle Augmenting Pattern P_3 to Hierarchy
 - Augment to a hierarchy from above
 - lacktriangle Contains P_2 between V_i and V_j

- lacksquare Nonplanarity of P_3 same as argument for T_9
- \blacksquare Augmenting Pattern P_3 to Hierarchy
 - Augment to a hierarchy from below

- lacktriangle Nonplanarity of P_3 same as argument for T_9
- lacktriangle Augmenting Pattern P_3 to Hierarchy
 - Augment to a hierarchy from below
 - lacktriangle Contains P_2 between V_l and V_j

■ Three MLNP pattern prototypes - P_A minus a bridge

■ Three MLNP pattern prototypes - P_A minus a bridge

- ightharpoonup Pattern P_{α}
 - lack x = y

 \blacksquare Three MLNP pattern prototypes - P_A minus a bridge

- ightharpoonup Pattern P_{β}

 \blacksquare Three MLNP pattern prototypes - P_A minus a bridge

- ightharpoonup Pattern P_{γ}
 - $\phi(x) > \phi(y)$

 \blacksquare Three MLNP pattern prototypes - P_A minus a bridge

- All have three disjoints linking paths
 - ♦ Why?

■ Three MLNP pattern prototypes - P_A minus a bridge

- All have three disjoints linking paths
 - ◆ Two disjoints path cannot force a crossing

- lacksquare Augment P_{α} to get P_3
 - ightharpoonup Start with P_{α}

- lacksquare Augment P_{α} to get P_3
 - ► Try augmenting to a hierarchy from above

- lacksquare Augment P_{α} to get P_3
 - ► Try augmenting to a hierarchy from above
 - ♦ Must have a cycle cannot match a tree

- lacksquare Augment P_lpha to get P_3
 - ► Try augmenting to a hierarchy from below

- lacksquare Augment P_lpha to get P_3
 - Try augmenting to a hierarchy from below
 - ◆ Again has a cycle again cannot match a tree

- lacksquare Augment P_lpha to get P_3
 - $ightharpoonup P_{\alpha}$ must be whole pattern

- \blacksquare Augment P_{α} to get P_3
 - $ightharpoonup P_{\alpha}$ must be whole pattern
 - $lacktriangleq P_3$ is only way for P_{lpha} to be MLNP

- Background
- Previous Patterns

- Background
- Previous Patterns
 - ► Hierarchy Patterns

- Background
- Previous Patterns
 - ► Hierarchy Patterns
 - ► Minimal Minimum Level Non-Planar (MLNP) Patterns for Trees

- Background
- Previous Patterns
- New Patterns

■ Find all patterns for level planar graphs with cycles

Future Work

- Find all patterns for level planar graphs with cycles
 - ► Four of the five forbidden ULP graphs with cycles will yield new patterns

Future Work

- Find all patterns for level planar graphs with cycles
 - ► Four of the five forbidden ULP graphs with cycles will yield new patterns
 - $lacktriangledown G_5, G_{\alpha}, G_{\kappa}$, and G_{δ} have degree-4 vertices like T_9

Future Work

- Find all patterns for level planar graphs with cycles
 - ► Four of the five forbidden ULP graphs with cycles will yield new patterns
 - $lacktriangledown G_5, G_{\alpha}, G_{\kappa}$, and G_{δ} have degree-4 vertices like T_9
 - ♦ None of the three HLNP patterns match any of these four

Y Oll