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Abstract

Consider a graphG with vertex setV in which each of then vertices is assigned a number from the set{1, . . . , k}
for some positive integerk. This assignmentφ is a labeling if all k numbers are used. Ifφ does not assign adjacent
vertices the same label, thenφ forms aleveling that partitionsV into k levels. If G has a planar drawing in which
they-coordinate of all vertices match their labels and edges aredrawn strictlyy-monotone, thenG is level planar. In
this paper, we consider the class of level trees that are level planar regardless of their labeling. We call such trees
unlabeled level planar (ULP). Our contributions are three-fold. First, we describe which trees areULP and provide
linear-time level planar drawing algorithms for any labeling. Second, we characterizeULP trees in terms of forbidden
subtrees so that any other tree must contain a subtree homeomorphic to one of these. Third, we provide a linear-time
recognition algorithm forULP trees.

1. Introduction

When drawing a planar graphG(V, E) in the xy-plane, a more restrictive form of planarity can be obtainedby
insisting on a predeterminedy-coordinate for each vertex inV in which all the edges inE are drawn straight with
a non-zero slope. This is equivalent to placing each vertex on one ofk horizontaltracks, ℓ j = {(x, j) | x ∈ R} for
j ∈ [1..k], and connecting each pair of adjacent vertices with a line segment. The straight-edge condition can be
relaxed to allow edge bends provided the edges remain strictly y-monotone. The vertices arelabeled by their track
number. This labelingφ is a leveling provided no pair of adjacent vertices are assigned to the same track. The tuple
G(V, E, φ) forms alevel graph. If a planar drawing ofG can be obtained in spite of these restrictions, thenG is said to
belevel planar.

Determining whether a given graphG is level planar onk levels can be difficult. The more restrictive problem
LEVELED-PLANAR of deciding whether a given directed graph is level planar in which all the edges are directed
downwards and are only between vertices of adjacent levels has been shown to be NP-complete [19]. However, ifn
levels are used, one for each vertex, a labeling in whichG is level planar is easily obtained. Any straight-line planar
drawing ofG can be rotated until the vertices have distincty-coordinates, the order of which gives the desired labeling.

We call alevel tree T (V, E, φ) that is level planar over all possible such labelingsφ an unlabeled level planar
(ULP) tree. We characterizeULP trees in terms of forbidden subtrees and provide linear-time recognition and drawing
algorithms for any labeling.

1.1. Background and Motivation

Visualizing hierarchical relationships has historicallybeen a strong motivating factor in the study of the planarity
of level graphs. Many hierarchical models such as those usedin social networks [2] aim to minimize the number
of levels while preserving planarity whenever possible. Sugiyama’s algorithm [24] does this by favoring the use of
shorter edges over longer edges in the display of adirected acyclic graph (DAG). Given that, often there are relatively

✩This work is supported in part by NSF grants CCF-0545743 and ACR-0222920.
∗Corresponding author.
Email addresses: aestrell@cs.arizona.edu (Alejandro Estrella-Balderrama),jfowler@cs.arizona.edu (J. Joseph Fowler),

kobourov@cs.arizona.edu (Stephen G. Kobourov)

Preprint submitted to Computational Geometry December 22, 2008



few levels on which one wants to place vertices. As a consequence, researching properties of level graphs withO(|V |)
levels has not been actively pursued in the area of graph visualization.

However,simultaneous geometric embedding, which is related to geometric thickness [6, 8], has led to a new
application of level graphs [3] with one vertex per level. Simultaneous embedding generalizes the notion of planarity
when considering multiple planar graphs. When simultaneously embedding a set of planar graphsG, each onn vertices
distinctly labeled by the numbers [1..n], all the vertices with the same label must coincide. While any single planar
graph can be drawn using only straight-line edges [11], maintaining planarity for each graph without edge bends may
not always be possible. Determining the pairs of graphs for which this can be done is NP-hard [10]. For instance,
while it is known that two trees cannot always be drawn simultaneously without crossings or edge bends [22], it is
unknown which trees always share a simultaneous geometric embedding with any path.

When simultaneously embedding a path with a tree, one approach is to attempt to draw the path monotonically.
This gives a labeling in which the vertices are numbered sequentially according to the order they occur along the path.
If the tree is level planar for this labeling, then Eadeset al. [7] show that any such level planar drawing with bends can
be redrawn inO(|V |) time without bends. This allows a simultaneous geometric embedding with a path in which the
path zig-zags downward through all vertices of the tree. This has the consequence that the set ofULP trees with one
vertex per level is precisely the set of trees that have a simultaneous geometric embedding with every monotone path.

1.2. Previous Work
Jüngeret al. [20] provide linear-time recognition and embedding algorithms for level planar graphs. Here the

embedding is the left-to-right ordering of edge intersections with each track. This corrects a PQ-tree algorithm to
test level planarity by Heath and Pemmaraju [17, 18]. Di Battista and Nardelli [4] gave the first PQ-tree test for
hierarchies—level graphs in which there exists ay-monotone path to each vertex from a source vertex on the upper-
most track. Eadeset al. [7] show how to obtain a straight-line level planar drawing in O(|V |) time given a level planar
embedding, though it may require exponential area. If the number of levels is constant, then Dujmovićet al. [5]
provide a linear-time level planarity testing algorithm using fixed parameter tractability. Healy and Kuusik [15] give
O(|V |2) recognition andO(|V |4) embedding algorithms forproper level planar graphs (in which all edges are between
adjacent levels) using vertex exchange graphs. Harrigan and Healy [14] improve the embedding algorithm toO(|V |2)
time making this a practical alternative to graph-drawing algorithms using PQ-trees that are difficult to implement and
have been shown to be error-prone [21].

Further, Di Battista and Nardelli provide a set oflevel non-planar (LNP) patterns [4] that fully characterize level
planar hierarchies. However, the level non-planar subgraphs these patterns match are not necessarily edge minimal.
Healy et al. [16] extend theLNP patterns for hierarchies to provide a set ofminimum level non-planar (MLNP)
patterns in order to characterize all level planar graphs. These subgraph patterns are analogous to Kuratowski’s result
that any minimal non-planar graph is either a subdividedK5 or K3,3 [23]. However, these patterns are specific to a
given labeling and are not based solely upon the underlying graph. This is unlike theULP characterization for trees
that is independent of any labeling and only relies on the structure of the tree in question. The set ofMLNP patterns
have been shown to be incomplete. Two newMLNP tree patterns were given in [13] based uponT9, a forbidden tree
for the set ofULP trees; see Fig. 1. This has reopened the problem of determining all suchMLNP patterns.

1.3. Our Contribution
We characterizeULP trees first for the case of one vertex per level and then for thecase of more vertices than

levels. Our contributions are three-fold.

1. First, we describe the set of unlabeled level planar (ULP) trees as either (i) acaterpillar (a tree in which the
removal of all the leaf vertices yields a path), (ii) aradius-2 star (any number of paths of length 1 or 2 with a
common endpoint), or (iii) adegree-3 spider (three paths with a common endpoint); see Fig. 1. We note that
(ii) and (iii) are onlyULP with one vertex per level. For eachULP tree, we provideO(|V |)-time level planar
drawing algorithms on integer grids for any labeling.

2. Second, we characterizeULP trees with one vertex per level in terms of two minimal forbidden trees,T8 and
T9; see Fig. 1. If multiple vertices per level are permitted, the forbidden treeT7 characterizesULP trees.

3. We also provide aO(|V |)-time recognition algorithm forULP trees. If a tree is notULP, we search for a subtree
homeomorphic to one of the forbidden trees, which serves as acertificate for the tree not beingULP.
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Figure 1: A Venn diagram of the universe of trees partitionedinto the trees containing a subdivision ofT8 and/or T9 (the gray rectangles minus
the circles) and the trees not containing eitherT8 or T9, which are caterpillars, radius-2 stars, and degree-3 spiders. These three classes of trees
comprise the set of unlabeled level planar (ULP) trees with one vertex per level.

2. Preliminaries

Historically, a level graph is defined as a directed graph with a partitioning of vertices into levels in which the
edges are oriented to connect vertices of lower levels to vertices of higher levels. Since we are only concerned with
the underlying undirected graph, we define a level graph without edge orientation. Ak-level graph G(V, E, φ) on n
vertices has a levelingφ : V → [1..k] such thatφ(u) , φ(v) (rather thanφ(u) < φ(v) in the case of directed graphs)
for every edge (u, v) ∈ E.

The levelingφ partitionsV into k independent setsV1, V2, . . . , Vk, which form thek levels of G. A level- j vertex
v is on the j th level V j of G if φ(v) = j such thatV j = φ

−1( j). If φ is an injection, each level contains at most one
vertex. If there is one vertex per level, this impliesk = n in which caseφ is a leveling withdistinct labels. Otherwise,
k < n andφ hasduplicate labels.

A level graphG has alevel drawing if (i) every vertex inV j can be placed along thetrack ℓ j = {(x, j) | x ∈ R}

and (ii) the edges can be drawn as strictlyy-monotone connected sequences of line segments. Here the endpoints of
each segment lie on distinct tracks so that each edge intersects any given track at most once. The order in which the
edges intersect the tracks along the positivex-direction gives alevel embedding of G. A level graphG is level planar
if it has a level drawing without edge crossings, which corresponds to alevel planar embedding of G. A level planar
graphG is realized with a level planar drawing, which forms arealization of G. A graphG is unlabeled level planar
(ULP) if it is level planar over all possible labelings.

A chain C of G is a simple path denotedv1--v2-- · · · --vt. The chainu--v represents the edge (u, v). A vertexv of C
is φ-minimal (or φ-maximal) if it has a minimal (or maximal) label of all the vertices ofC. A vertex isφ-extreme if it
is φ-minimal orφ-maximal.

Subdividing an edge (u, v) in a graphG(V, E) replaces it with edges (u,w) and (w, v) in E by adding vertexw to
V. A subdivision is the result of subdividing any number of edges. A graphG(V, E) is isomorphic to G̃(Ṽ , Ẽ) if there
exists a bijectionf : V 7→ Ṽ such that (u, v) ∈ E if and only if

(

f (u), f (v)
)

∈ Ẽ. GraphG(V, E) is homeomorphic to
graphG̃(Ṽ , Ẽ) if there is an isomorphism between subdivisions ofG andG̃.

The tupleG(V, E, φ) is proper if each edge (u, v) in E is a short edge such that|φ(u) − φ(v)| = 1. Any improper
level graph can be made proper by subdividing eachlong edge (|φ(u) − φ(v)| > 1) at the points it crosses each track.
These points correspond to edge bends if edges are not drawn straight.

A caterpillar is a tree in which the removal of all its leaf vertices yields apath, i.e., itsspine. A lobster is a tree in
which the removal of all its leaf vertices yields a caterpillar, but not a path. Theeccentricity of a vertexv in a treeT
is the length of the longest path withv as endpoint. Theradius of T is the minimum eccentricity of all vertices inT .
A radius-2 star (degree-3 spider) is a tree of radius 2 (arbitrary radius) in which all vertices are degree 1 or 2 except
for the vertexr, theroot, of degree greater than 2 (of degree equal to 3).



3. ULP Trees with Distinct Labels

We first present the drawing algorithms forULP trees with one vertex per level and then their forbidden tree
characterization.

3.1. Drawing ULP Trees with Distinct Labels
Many of our algorithms take a tree as an input and need to efficiently remove degree-1 vertices. This is nontrivial

since each deletion can require linear-time in the worst case if standard adjacency lists are used to represent the tree.
The next lemma shows how to remove all leaf vertices of a tree efficiently.

Lemma 1. All leaves can be removed from an n-vertex tree in O(n) time.

Proof. Removing a leaf from a tree can be done inO(1) time if T has a special adjacency list representation. For each
vertexu in the list of vertexv, we store a pointer to the location ofv in the list ofu. Additionally, the adjacency lists
are doubly-linked to allow for efficient deletion. The following pseudocode uses this representation to run inO(n)
time.

Remove−Leaves
(

T (V, E)
)

⊲ T is a tree.
1. For each vertexu with an adjacency list with exactly one vertexv:
2. Delete the list ofu retaining the pointerp to v that was in the list.
3. Usep to removeu from the doubly-linked list ofv in O(1) time.

The following lemmas describe which trees areULP and how to realize them in linear time. Brasset al. [3] gave
an algorithm that produces a simultaneous geometric embedding of a caterpillar and a path onn vertices on ann × 2n
grid. We give an algorithm for producing a more compact drawing with the next lemma.

Lemma 2. An n-vertex caterpillar with an m-vertex spine can be realized with straight-line edges in O(n) time on a
2m × n grid for any distinct labeling.

Proof. The spinev1--v2-- · · · --vm is drawn with vertices placed at oddx-coordinates. For each spine vertexvi, leaf
vertices are placed one unit to the right at evenx-coordinates. If a leaf would overlap a spine edge, then it would be
placed directly above or belowvi instead; see Fig. 2. The following pseudocode takesO(n) time as the location of
each vertex is determined inO(1) time.
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Figure 2: A realization of a caterpillar with distinct labels on a 8× 30 grid.



Draw−Caterpillar
(

T (V, E, φ)
)

⊲ T is a caterpillar with distinct labels.
1. LetS , v1--v2-- · · · --vm, be the spine given byRemove−Leaves(T ).
2. Draw spineS by placingvi at

(

2i − 1, φ(vi)
)

for i ∈ [1..m].
3. Draw edgevi--vi+1 for i ∈ [1..(m − 1)].
4. For eachvi for i ∈ [1..m]:
5. For each leafℓ that is adjacent tovi:
6. Unless leafℓ would lie onvi--vi+1, placeℓ right of vi at

(

2i, φ(ℓ)
)

.
7. Otherwise, place leafℓ at

(

2i − 1, φ(ℓ)
)

above or belowvi.
8. Draw edgevi--ℓ.

Lemma 3. An n-vertex radius-2 star can be realized with straight-line edges in O(n) time on a (2n + 1)× n grid for
any distinct labeling.

Proof. The x-coordinates range from−n to n with the rootr having anx-coordinate of 0. Any adjacent leaf vertices
of r have anx-coordinate of−1, one unit to the left ofr. Any other neighboru of r will either have anx-coordinate of
1, one unit to the right ofr, if the label of the leafℓ at a distance 1 fromu is greater thanu or anx-coordinate of−1,
otherwise.

Each leafℓ at a distance 2 fromr is given anx-coordinate so that the edgeℓ--u has a slope of 1, i.e.,∆y = ∆x; see
Fig. 3. Thex-coordinateℓx of ℓ can be found by solving the equationℓx −ux = φ(ℓ)−φ(u) to getℓx = φ(ℓ)−φ(u)+ux.

This means thatℓx = φ(ℓ) − φ(u) + 1 if φ(ℓ) > φ(u), otherwise,ℓx = φ(ℓ) − φ(u) − 1. The following pseudocode
takesO(n) time since the coordinates of each vertex are determined inO(1) time.

Draw−Radius−2−Star
(

T (V, E, φ)
)

⊲ T is a radius-2 star with distinct labels.
1. Placer, the unique root vertex of maximum degree, at

(

0, φ(r)
)

.
2. For each vertexu that is adjacent tor:
3. If u is a leaf vertex, placeu at

(

−1, φ(u)
)

and draw edger--u.
4. Otherwise, letℓ be the leaf vertex that is adjacent tou.
5. If φ(ℓ) > φ(u), placeu at

(

1, φ(u)
)

andℓ at
(

φ(ℓ)−φ(u)+1, φ(ℓ)
)

.
6. Otherwise, placeu at

(

−1, φ(u)
)

andℓ at
(

φ(ℓ) − φ(u) − 1, φ(ℓ)
)

.
7. Draw edgesr--u andu--ℓ.
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Figure 3: A realization of a radius-2 star with distinct labels on a 59× 29 grid. The gray nodes indicate the intersection points of rays of slope 1
emanating from each leaf to imagined level-0 and level-(n + 1) that are drawn with dashed lines.



Lemma 4. An n-vertex degree-3 spider can be realized in O(n) time on an n × n grid with one bend per edge for any
distinct labeling.

Proof. We want to greedily drawT with one bend per edge starting from the rootr and proceeding outwards vertex
by vertex along each chain. However, we cannot draw the chains independently. Instead, we must alternate between
drawing the three chains. We need to guarantee that the next vertexv of a chain can always be placed either one unit
to the left (or to the right) of the leftmost (or the rightmost) point of the subtree drawn so far without introducing a
crossing.

We present this algorithm in four stages. First, we give the high-level pseudocode and the two invariants it
maintains. We then show how to start drawing the degree-3 spider in order to initially achieve these invariants.
Afterward, we turn to more detailed aspects of the algorithm. We determine to what extent we need to draw a given
chain before switching to draw the next chain, which is dictated by the invariants we maintain. Finally, we conclude
with how to draw each edge so that it does not cross any of the previously drawn edges.

A chainC is drawn one vertex at a time, which is anexpansion of C. Each subsequent vertex is placed one unit
to the left or to the right (continuing in the initial direction) of the previously placed vertex. However, we stop once
the last placed vertex ofC becomesφ-extreme. If the chainC has any vertices left to place, then the chainC′ whose
last placed vertex isnot φ-extreme is the chain to expand next in theopposite direction. Otherwise, once a chainC is
completely drawn, one of the remaining two chains is freely expanded to the left while the other chain is expanded to
the right.

To guarantee that one chain can always be expanded to the leftor to the right, two invariants need to be maintained
after each vertex is placed:

(1) Two of the leavess andt of the subtreeT ′ drawn so far areφ-extreme.

(2) The trackℓu of the third leafu of the subtreeT ′ either does not intersect any other part ofT ′ to the left or to the
right of u (leaving a direction that the chain ofu can continue to be expanded); see Figs. 4(e), 7(d).

These invariants allow the chainC with u to be expanded in the free direction until its last placed vertexv becomes
φ-extreme as in going from Fig. 4(a) to (b) (heres, t, andu are vertices 9, 12, and 11 in Fig. 4(a), respectively, andv
is vertex 8 in Fig. 4(b)). Thenv replaces one of theφ-extreme verticess or t so that invariant (1) continues to hold.
W.l.o.g. assume thats is no longerφ-extreme (in Fig. 4(b)v, vertex 8, becomes the newφ-extreme vertexs).

Before placing the last vertexv of C, the track ofs, ℓs, does not intersect any other part ofT ′, the subtree drawn so
far, sinces is φ-extreme. The chainC can intersectℓs on at most one side ofs after placingv, blocking that direction.
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Figure 4: Step-by-step realization of a worst-case degree-3 spider with bends.
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Figure 5: Four cases of expanding chains forφ(r) < φ(vmin) < φ(vmid) < φ(vmax). All four can lead to crossings on the third expansion without
taking precautions.

As a result, invariant (2) continues to hold with the olds now playing the role of the newu. The high-level algorithm
Draw−Degree−3−Spider maintains these two invariants by alternating between expanding chains to the left and to
the right until a vertex becomesφ-extreme as depicted in Figs. 4(e), 7(d).

Draw−Degree−3−Spider
(

T (V, E, φ)
)

⊲ T is a degree-3 spider with distinct labels.
1. LetT ′ ← Start−Drawing−Degree−3−Spider(T ).
2. LetU ← {s, t, u} be the leaves ofT ′ such thatφ(s) < φ(u) < φ(t).
3. Setdirection← right
4. Whileu is not a leaf vertex:
5. Setv← Expand−Chain(T, T ′, u, direction).
6. If φ(v) < φ(s) or φ(v) > φ(t), then
7. Updateu← s ands← v if φ(v) < φ(s).
8. Updateu← t andt ← v if φ(v) > φ(t).
9. Changedirection (right to left, and vice versa).
10. Else, updateu← v.
11. Whiles is not a leaf vertex:
12. Sets← Expand−Chain(T, T ′, s, left).
13. Whilet is not a leaf vertex:
14. Sett ← Expand−Chain(T, T ′, t, right).

Initially drawing a degree-3 spider for which the two invariants hold is non-trivial as Fig. 5 illustrates. Herevmin,
vmid, andvmax are the vertices that are adjacent tor such thatφ(vmin) < φ(vmid) < φ(vmax). Fig. 5(a) gives an example
of these three vertices withx-coordinates−1, 1, and 2, respectively.

Sincevmax is the onlyφ-extreme leaf vertex, either the chain ofvmid or vmin can be expanded next. However,
Fig. 5(b) and (c) depict two cases in which the chain ofvmid is first expanded to the left leaving eithervmin or vmax to
be expanded next to the right. This leads to a crossing on the third expansion. Fig. 5(d) and (e) depicts similar cases
in whichvmin is first expanded to the left. In all four cases a crossing is introduced. To prevent this, care must be taken
while initially placing these three vertices.

If φ(vmin) < φ(r) < φ(vmax), then both invariants hold by placingvmin andvmax one unit to the left and to the right
of r, respectively, andvmid to the right ofvmax; see Fig. 6(a). Otherwise, if all three vertices have labelsless than or
greater thanr as in Fig. 6(b), then invariant (1) does not hold. Expanding either of the other two chains in order to
achieve invariant (1) may prevent invariant (2) from being achievable, which is the undesirable scenario of Fig. 5. To
avoid this, the chainC that reaches the extreme pointwextreme before it terminates or first crossesℓr, i.e., the track of
r, is drawn first so that it lies between the other two chains. This prevents either of those two chains from becoming
trapped by an initial portion ofC. Figs. 7(a)–(c) illustrate determining this extreme pointwextreme in Fig. 7(b) among
the initial portions of the three chains drawn with solid edges. The solid edges differ in Fig. 7(d) by showing the initial
part of the degree-3 spider that first satisfies both invariants.

Let vextreme ∈ {vmin, vmid, vmax} be the initial vertex of chainC with the most extreme vertexwextreme. We first
expand chainC to the right ofr until C reacheswextreme. After expanding either of the other two chains to the left so
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that its last placed vertexwle f t becomes the otherφ-extreme after crossingℓr, invariant (1) holds (withwextreme and
wle f t playing the roles of verticess andt in invariant (1)). Placing the third initial vertexvright one unit to the right of
r then achieves invariant (2) (withvright playing the role of vertexu in invariant (2)). Afterward, both invariants are
satisfied and the next expansion starts from the right. This is done with the following pseudocode.

Start−Drawing−Degree−3−Spider
(

T (V, E, φ)
)

⊲ Initially draw degree-3 spiderT until both invariants hold.
1. Placer, the root vertex of degree 3, at

(

0, φ(r)
)

.
2. LetU ← {vmin, vmid, vmax} be the vertices that are adjacent tor such

thatφ(vmin) < φ(vmid) < φ(vmax).
3. LetT ′(V ′, E′) be the tree drawn so far whereV ′ ← {r} andE′ ← ∅.
4. If φ(vmin) < φ(r) < φ(vmax), then

Draw−Bent−Edge
(

T, T ′, r, vmin, left
)

,
Draw−Bent−Edge

(

T, T ′, r, vmax, right
)

, and
Draw−Bent−Edge

(

T, T ′, r, vmid, right
)

.
5. Otherwise,
6. Setwextreme ← r, the current vertex that is the mostφ-extreme:
7. For eachv in U:
8. Setw′extreme ← Get−Extreme(T, r, v).
9. If φ(r) ≤ φ(wextreme) < φ(w′extreme) or

φ(r) ≥ φ(wextreme) > φ(w′extreme),
then setwextreme ← w′extreme andvextreme ← v.

10. Letvle f t andvright be the two vertices inU other thanvextreme.
11. Drawvextreme with Draw−Bent−Edge

(

T, T ′, r, vextreme, right
)

and expand withExpand−Chain
(

T, T ′, vextreme, right, wextreme
)

.
12. Drawvright with Draw−Bent−Edge

(

T, T ′, r, vright, right
)

.
13. Drawvle f t with Draw−Bent−Edge

(

T, T ′, r, vle f t, left
)

and expand withExpand−Chain
(

T, T ′, wle f t, left, null
)

.

HereStart−Drawing−Degree−3−Spider determines the initial extreme of a chain with the followingprocedure.

Get−Extreme
(

T (V, E, φ), r, u
)

⊲ Find extreme of chain with vertexu in a degree-3 spiderT with root r.
1. Setextreme← φ(u), the current extreme to the label ofu.
2. While there is another next vertexv along the chain starting withu

that does not cause the chain to crossℓr, the track ofr:
3. If φ(u) > φ(r), increaseextreme to φ(v) if φ(v) > extreme.
4. Otherwise, decreaseextreme to φ(v) if φ(v) < extreme.
5. Returnwextreme, the vertex with the label ofextreme.
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Figure 7: Determining the initial extreme used to start drawing a degree-3 spider.

Expansion of a chain is then accomplished by the next procedure.

Expand−Chain
(

T (V, E, φ), T ′(V ′, E′), u, direction, w
)

⊲ T ′ is the subtree ofT drawn so far. Expands the chain starting atu to
the right ifdirection is right, and to the left otherwise. Specifying the
optional vertexw forces the expansion to go at least tow even after a
vertex of the chain becomesφ-extreme.
1. Letφmax andφmin be the maximum and minimum labels ofV ′ ∪ {w}.
2. For the next vertexv that is adjacent tou in T that is not inV ′:
3. Draw−Bent−Edge(T, T ′, u, v, direction) and setu← v.
4. Until φ(v) > φmax or φ(v) < φmin or v is w or v is a leaf vertex.
5. Returnv, the last vertex that was added toT ′.

Finally, we consider how to draw each edge with a bend. If no part of T ′ lies directly to the left (or to the right)
of the last vertexu of the chain, thenu could reach vertexv. Route the edge to the left (or to the right) fromu that
is above (or below) all the other vertices to a bend directly above (or below)v. From the bend, the edge proceeds
directly downwards (or upwards) tov.

Bendb has the samex-coordinate asv. They-coordinate ofb is determined by whether the previous vertexu of v
is above or belowv. If φ(u) > φ(v), we placeb one unit belowu, otherwise, we placeb one unit aboveu. This is so
that if u is φ-extreme, the line segmentu--b will not cross any of the edges of the subtreeT ′ drawn so far.

The x-coordinate ofv is one greater (or one less) than the maximum (or minimum)x-coordinate of the treeT ′

drawn so far if the edge is to be drawn to the right (or to the left); see Fig. 8(a) and (b). This procedure of drawing
edgeu--v with bendb is given by the following pseudocode.

Draw−Bent−Edge
(

T (V, E, φ), T ′(V ′, E′), u, v, direction
)

⊲ T ′ is the subtree ofT drawn so far. Vertexu has been placed and
vertexv is to be drawn to the right ofu if direction is right, and to
the left ofu, otherwise.
1. Let xmax andxmin be maximum and minimumx-coordinates ofT ′.
2. If direction is right, setvx ← xmax + 1, otherwise setvx ← xmin − 1.
3. If φ(u) < φ(v), setby ← φ(u) + 1. Otherwise, setby ← φ(u) − 1.
4. Placev at

(

vx, φ(v)
)

, bendb at
(

vx, by
)

, and draw edgesu--b andb--v.
5. UpdateT ′ by addingv to V ′ and (u, v) to E′.
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Figure 8: In (a) and (b), edgeu--v is drawn to the left and to the right ofu usingDraw−Bent−Edge. In (c), the right chain is expanded to the right
from u usingExpand−Chain until v replacess as theφ-maximum.

HereDraw−Bent−Edge draws the edgeu--v with bendb so thatb is either one unit above or belowu depending
on whetherv is above or belowu. This avoids any crossings since invariant (2) ensures no part of T ′ lies along the
track ofu in the direction of the expansion.

Start−Drawing−Degree−3−Spider takesO(n) time since each vertex is placed inO(1) time and each of the three
calls toGet−Extreme takeO(n) time. Afterward, each vertex is placed inO(1) time in Draw−Degree−3−Spider,
leading to an overallO(n) running time. Since the drawing is widened one unit per vertex, the drawing usesn × n
space.

Lemma 5. An n-vertex degree-3 spider can be realized with no bends in O(n) time though it may require up to
O(n!) × n area for some distinct labelings.

Proof. The algorithm of Lemma 4 can be modified to use straight-line edges with the following edge drawing algo-
rithm in lieu ofDraw−Bent−Edge.

Draw−Straight−Edge
(

T (V, E, φ), T ′(V ′, E′), u, v, direction
)

⊲ T ′ is the subtree ofT drawn so far. Vertexu has been placed and
vertexv is to be placed next.
1. Let xmax andxmin be maximum and minimumx-coordinates ofT ′.
2. If direction is right, let xv > xmax be the least such integer in which

edgeu--v would not intersectT ′.
3. Otherwise, letxv < xmin be the greatest such integer in which edge

u--v would not intersectT ′.
4. Placev at

(

xv, φ(v)
)

and draw edgeu--v.
5. UpdateT ′ by addingv to V ′ and (u, v) to E′.

Figure 9 gives a degree-3 spider that requires exponential area when drawn using this modified algorithm. At each
step in the algorithm, there is only one choice when placing the next vertex so that the three chains spiral about each
other.

We bound the value ofxv at step j of the algorithm. Leth j andw j denote the height and width of the subtree
drawn up and to stepj. Let a--b--c, o--p--q, andu--v--w be the last two edges of the three chains as shown in Fig. 9 in
which edgesa--b, o--p, u--v, b--c, p--q, andv--w are drawn in stepsi, i+ 1, . . . , i+ 5, respectively. For the last edgev--w
in stepi + 5 not to have a bend, it cannot intersect any part of the tree drawn so far. This implies thatv--w must lie
below theφ-minimal vertexb from stepi. Sincev was placed in stepi + 2, the difference between thex-coordinates
of v andb (subtracting the extra widthwi+1 − wi from drawingo--p in stepi + 1) is

xv − xb = (wi+2 − wi) − (wi+1 − wi) = wi+2 − wi+1.
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Figure 9: A degree-3 spider that can requireO(n!) × n space when realized with no bends.

Similarly, the difference between thex-coordinates ofw andv (subtracting the extra widthwi+4−wi+2 from drawing
p--q in stepi + 4) is

xw − xv = (wi+5 − wi+2) − (wi+4 − wi+2) = wi+5 − wi+4.

The slope of the edgev--w is strictly greater than−1/(xb − xx), which gives the most compact drawing. The height
difference betweenw andv is the height at stepi + 5 minus the extra height of 1 from placingq in stepi + 4. Hence,

xw − xv = (yw − yv)/(slope ofv--w) = (hi+5 − 1) · (xv − xb).

Sinceh j = j, we combine the previous three equations to solve forwi+5 as

wi+5 = (i + 4)(wi+2 − wi+1) + wi+4

= (i + 4)(wi+2 − wi+1) + (i + 3)(wi+1 − wi) + wi+3

...

=

i+4
∑

k=4

k(wk−2 − wk−3).

Substituting forj = i + 5, we determine the recurrence forw j to be

w j =

j−1
∑

k=4

k(wk−2 − wk−3)

= ( j − 1)w j−3 − ( j − 1)w j−4 + ( j − 2)w j−4 − ( j − 2)w j−5 + . . . − w1

= ( j − 1)w j−3 − w j−4 − w j−5 − . . . − w1

= ( j − 1)w j−3 −

j−4
∑

k=1

wk.



Finally, we solve the recurrence for the increase in width∆ j at stepj as

w j − w j−1 =
(

( j − 1)w j−3 − w j−4 −

j−5
∑

k=1

wk

)

−
(

( j − 2)w j−4 −

j−5
∑

k=1

wk

)

= ( j − 1)(w j−3 − w j−4)

∆ j = ( j − 1)∆ j−3 = ( j − 1)( j − 4) · · ·1.

Hence, we have (j−1
3 )! < ( j − 4)( j − 7) · · ·1 < ( j − 4)! < ∆ j < ( j − 1)! as bounds. This shows that this

tree requires exponential area using this modified algorithm. The width of the degree-3 spider at stepj can then be
bounded as

w j =

j−1
∑

k=1

k! = ( j − 1)( j − 1)! < j !

This tree is a worst-case for our algorithm in terms of the amount of area used in each step. We observe that
by placing thej th vertex of any degree-3 spiderT at a distance of| j !| from r in the appropriate positive or negative
x-direction, which is more than strictly necessary, we are guaranteed to avoid a crossing inT . Hence, the algorithm
uses at most 2n! × n area.

Combining Lemmas 2, 3, 4, and 5, we have our first theorem.

Theorem 6. Caterpillars, radius-2 stars, and degree-3 spiders are all ULP with one vertex per level. Each can be
realized in O(n) time.

3.2. Forbidden Trees for ULP Trees with Distinct Labels

We next introduce the forbidden subtreesT8 andT9 shown in Fig. 10.

Lemma 7. There exist labelings preventing T8 and T9 from being level planar when distinct labels are used.

Proof. First, we considerT8 in Fig. 10(a) with a distinct labeling satisfying{φ(a), φ( f )} > φ(d) > {φ(g), φ(c)} > φ(b) >
{φ(e), φ(h)} (or its reverse). We contend that these labelings are level non-planar. To prevent the chaina--b--c--d--e from
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self intersecting,c must lie between the intersections ofa--b andd--e with the trackℓc of c. The edgec--g forcesg to
also lie between the intersections ofa--b andd--e with the trackℓg. There are two cases: either (i)g lies between the
intersection ofa--b with ℓg and the intersection ofc--d (if φ(c) < φ(g)) or b--c (if φ(c) > φ(g)) with ℓg, in which case
g--h must cross an edge of the chaina--b--c--d, or (ii) g lies between the intersections ofc--d (if φ(c) < φ(g)) or b--c (if
φ(c) > φ(g)) with ℓg and the intersection ofd--e with ℓg, in which caseg-- f must cross an edge of chainb--c--d--e.

Next, we considerT9 in Fig. 10(b) with a distinct labeling satisfying the partial order{φ(a), φ( f )} > φ(h) > φ(d) >
φ(c) > φ(b) > φ(e) > {φ(g), φ(i)} (or its reverse). Such a labeling can also be shown to level non-planar. Again to
prevent the chaina--b--c--d--e from self intersecting,c must lie between the intersections ofa--b andd--e with trackℓc.
W.l.o.g. assume thata--b intersectsℓc to the right of whered--e intersectsℓc. To prevent the chaina--b--c--d--e-- f from
self intersecting, there are two cases to consider: either (i) e-- f intersectsℓc to the left of wherea--b intersectsℓc or
(ii) e-- f intersectsℓc to the right of whered--e intersectsℓc. For case (i),c--g must either intersectℓe to the left ofe,
in which case it must crosse-- f , or to the right ofe, in which case it must crossd--e. For case (ii), eitherh lies to left
of wherea--b intersectsℓh in which casec--h must crossa--b, h lies to right of wheree-- f intersectsℓh in which case
c--h must crosse-- f , or h lies between wherea--b ande-- f intersectℓh in which caseh--i must cross an edge of chain
a--b--c--d--e-- f as in Fig. 10(b).

This leads to the following corollary:

Corollary 8. If a tree contains a subtree homeomorphic to T8 or T9, then it cannot be ULP with distinct labels.

Proof. We provide a labelingφ of a treeT containing a subtree homeomorphic to a level non-planar tree T̃ , which can
be eitherT8 or T9 by Lemma 7. Leth be the homeomorphism that maps an edge inT̃ to the path inT and a vertex in
T̃ to the endpoint of the path inT . Label the vertices of̃T using an appropriate labelingφ′ from Lemma 7 that forces
a crossing inT̃ .

We maintain the same relative ordering of the labels inT as inT̃ . In particular, we wantφ
(

h(u)
)

< φ
(

h(v)
)

if and
only if φ′(u) < φ′(v) for each edge (u, v) in T̃ . For each pathh

(

(u, v)
)

= p(u,v) = v1--v2-- · · · --vk in T that corresponds
to an edge (u, v) in T̃ , we wantφ(v1) < φ(v2) < · · · < φ(vk) if φ′(u) < φ′(v). We can assign the other vertices ofT
not in the image ofh arbitrary labels. Then every edge (u, v) in T̃ corresponds to a strictly monotone pathp(u,v) in T
preserving the non-planarity of the realization ofT̃ .

We next show thatT8 andT9 are minimal level non-planar trees.

Lemma 9. Removing any edge from T8 or T9 yields a forest of ULP trees.

Proof. If removing an edge fromT8 of Fig. 10(a) decreases the degree of the verticesc and/or g, then the resulting
graph is either a forest of (i) a caterpillar and a lone edge (after removingb--c or c--d), (ii) two paths (after removing
c--g), or (iii) a degree-3 spider (after removing eitherf --g or g--h). Otherwise, removing eithera--b or d--e, which
maintains the degree of bothc andg, yields (iv) a caterpillar with a spine of length 5. Moving onto T9 of Fig. 10(b), if
removing an edge maintains the degree of vertexc, then the resulting graph must be a forest of either (i) a caterpillar
(after removinga--b, d--e or h--i) and the possible lone edgee-- f (if d--e was removed) or (ii) a radius-2 star (after
removinge-- f ). On the other hand, if the degree ofc decreases to 3, then the resulting graph is a (iii) degree-3 spider
and, possibly, a path.

We can now complete our characterization ofULP trees with distinct labels.

Lemma 10. Every tree either contains a subtree homeomorphic to T8 or T9 or it is a caterpillar, a radius-2 star, or a
degree-3 spider.

Proof. Any treeT that is not a caterpillar must contain a lobster. One can simply remove leaf vertices ofT until
a lobster remains. Every lobster must contain a subtree isomorphic to a minimal lobsterT7 (a K1,3 with each edge
subdivided once) since any lobster has at least one vertexr of degree 3 and the three verticesa, b, andc that are at
distance 2 fromr; see Fig. 11(a). BothT8 andT9 each contain a subtree isomorphic toT7; hence, they cannot be
caterpillars.T8 cannot be a radius-2 star or a degree-3 spider because it has two vertices of degree 3. SinceT9 has
radius 3 and a vertex of degree 4, it also cannot be a radius-2 star or a degree-3 spider. By Lemma 9, bothT8 andT9

are minimal examples of trees that are not caterpillars, radius-2 stars, or degree-3 spiders. We next show that trees
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without a subtree homeomorphic toT8 or T9 are one of the three classes ofULP trees with distinct labels given by
Theorem 6.

Assume then thatT is not in any of these three classes of trees. SinceT is not a degree-3 spider, there are two
cases: eitherT has (i) two verticess andt with degree of at least 3 or (ii) one vertexu with degreek greater than 3. In
case (i), we find a subtree ofT homeomorphic toT8. Let x andy denote the two vertices of degree 3 inT8, wherey is
the one with adjacent leaf vertices; see Fig. 11(b). SinceT is not a caterpillar it must have a subtree isomorphic toT7.
W.l.o.g. lets be the vertex inT corresponding to the root vertexr of T7, and lett be any other vertex with degree of
at least 3 inT .

We map the verticess andt from T to the verticesx andy from T8, respectively. Sincet has degree of at least 3 in
T , there exist two neighbors oft not along the path froms to t in T , which we map to the two vertices that correspond
to the leaf vertices adjacent toy in T8. Only one of the three verticesu, v, andw in T , corresponding to the leaf vertices
a, b, andc of T7, can be along the paths to t in T . Suppose w.l.o.g. it is the vertexv that corresponds tob. Then the
verticesu andw in T that correspond toa andc in T7 can be mapped to the two remaining leaf vertices inT8. This
completes the mapping of vertices ofT8, showing thatT contains a subtree homeomorphic toT8. The only subdivided
edge ofT8 is x--y that maps to the path froms to t in T .

Next we consider case (ii) in which we find the subtree inT homeomorphic toT9. The one vertexu in T of
degreek greater than 3 must be the vertex corresponding to the root vertex of the subtree inT isomorphic toT7; see
Fig. 11(c). Otherwise, if there were separate vertices of degree greater than 3, case (i) would apply. Letu be mapped
to the degree-4 vertexv of T9. SinceT is not a radius-2 star, there exists a vertexw at a distance 3 fromu, which can
be mapped to the leaf vertex inT9 at a distance 3 fromv.

Only one of the three verticesx, y, andz in T , corresponding to the leaf verticesa, b, andc of T7, can be along the
path fromu to w. W.l.o.g. supposeb corresponds to the vertexy along the path fromu to w. The other two vertices
x andz in T that correspond toa andc in T7 can be mapped to the other two leaf vertices inT9. The remaining leaf
vertex ofT9 adjacent tov can be mapped to the fourth vertex adjacent tou in T sinceu has degree greater than 3.
Hence,T has a subtree that is homeomorphic toT9.

Combining Theorem 6 and Corollary 8 with Lemma 10 gives our main theorem characterizingULP trees with
distinct labels.

Theorem 11. The following three statements are equivalent:

1. T does not contain a subtree homeomorphic to T8 or T9.

2. T is a caterpillar, a radius-2 star, or a degree-3 spider.

3. T is ULP trees with distinct labels.

4. Unlabeled Level Planar Trees with Duplicate Labels

First, we show that caterpillars are the onlyULP trees with duplicate labels and then show thatT7 is the only
minimal forbidden subtree.



4.1. Drawing ULP Trees with Duplicate Labels

We extend Lemma 2 to compute a linear-time realization of a caterpillar for any labelingφ by showing that it is
alsoULP with duplicate labels. For any nonempty subsetU of V, we defineDup(U) to be the number of vertices inU
with “duplicate” labels, i.e.,Dup(U) = 0 if all of U have distinct labels, whereas,Dup(U) = |U | − 1 if all of U have
the same label. For a tree, we also defineLabove(v) andLbelow(v) to be the sets of leaf vertices that are adjacent tov in
T with labels less than and greater thanφ(v), respectively. The distance between adjacent spine verticesvi andvi+1 is
then a function of the number of duplicate labels of the leaf vertices ofvi as given by the following lemma.

Lemma 12. An n-vertex caterpillar on k levels with an m-vertex spine can be realized with straight-line edges in O(n)
time on a (m + b) × k grid for any labeling where b =

∑m
i=1 max

{

Dup
(

Labove(vi)
)

, Dup
(

Lbelow(vi)
)}

.

Proof. We draw the spinev1--v2-- · · · --vm from the left to the right so that the leaf vertices ofLabove(vi) andLbelow(vi) lie
to the right ofvi for i ∈ [1..m]. With a clockwise (or counterclockwise) radial sweep, we draw each vertex inLabove(vi)
(or Lbelow(vi)) at the next available grid point. Drawing the spine edgevi--vi+1 with the leaf vertices ofvi takes a total
of
(

1+max
{

Dup
(

Labove(vi)
)

, Dup
(

Lbelow(vi)
)}

)

× k space.
Placevi+1 at the nextx-coordinate to the right of the leaf vertices ofvi; see Fig. 12. Since each of the edgesℓ--vi

incident tovi have unique slopes, at most one leafℓ might lie along the edgevi--vi+1. In this case,ℓ is moved to the
left so as to have the samex-coordinate asvi.

This drawing is then a realization with straight-line edgessince each leaf incident tovi is either drawn above or
belowvi or to the right ofvi in order to avoid all crossings. The pseudocode for this algorithm is given next.

Draw−Caterpillar
(

T (V, E, φ)
)

⊲ T is a caterpillar with distinct or duplicate labels.
1. LetS , v1--v2-- · · · --vm, be the spine ofT , andL be the leaves ofT .
2. Perform a counting sort onL with key1 and then withkey2 such that

key1(ℓ) = φ(ℓ) andkey2(ℓ) = i for each leafℓ in L adjacent tovi.
3. LetL1, L2, . . . , Lm be sublists where eachℓ in Li is adjacent tovi.
4. Initialize x, thex-coordinate of the current spine vertex, to 1.
5. For eachvi for i ∈ [1..m]:
6. Placevi at

(

x, φ(vi)
)

and draw spine edgevi--vi+1 if i > 1.
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Figure 12: A realization of a 45-vertex caterpillar with duplicate labels on a 20× 6 grid. Arrows indicate how vertices initially placed on spine
edges are moved in order to avoid any edge overlaps.



7. Setxa andxb, thex-coordinates ofLi above and belowvi, to x + 1.
8. For next leafℓ in Li starting at the beginning so thatφ(ℓ) > φ(vi):
9. Incrementxa if last leaf had the same label. Placeℓ at

(

xa, φ(ℓ)
)

.
10. For next leafℓ in Li starting at the end so thatφ(ℓ) < φ(vi):
11. Incrementxb if last leaf had the same label. Placeℓ at

(

xb, φ(ℓ)
)

.
12. Updatex = max{xa, xb} + 1.
13. For each leafℓ adjacent to spine vertexv with x-coordinatevx:
14. If ℓ lies on spine edgev--w, moveℓ to

(

vx, φ(ℓ)
)

.
15. Draw edgeℓ--v.

Step 2 forms a linear-time radix sort on the leaf vertices that allows processing in clockwise and counterclockwise
directions. The two calls made to counting sort each takeΘ(n + k) time, sorting the adjacency lists of all the leaf
vertices simultaneously. Otherwise, it would takeΘ(m(n + k)) time if the lists were sorted separately for each of the
m spine vertices. As a result,Draw−Caterpillar runs inO(n) time since each vertex is placed inO(1) time.

Corollary 13. Caterpillars on k levels are ULP for any 0 ≤ k ≤ n. Each can be straight-line realized in O(n) time on
an O(n) × n grid for any labeling.

4.2. Forbidden Tree for ULP Trees with Duplicate Labels

The forbidden treeT7 in Fig. 13 is notULP with duplicate labels for the given labelings that force a self intersec-
tion.

Lemma 14. There exists a duplicate labeling that prevents T7 from being level planar on k levels for any 2 ≤ k < n.

Proof. Let C andC′ denote chainsa--b--c--d--e anda--b--c--g-- f , respectively. ForT7, if k = 2, letφ obeyφ(a) = φ(c) =
φ( f ) = φ(e) > φ(b) = φ(d) = φ(g). W.l.o.g. assume that bothC andC′ each proceed left to right in order to avoid self
intersections. This means thata--b intersects trackℓa to the left of wherec and f intersectℓa and trackℓb to the left
of whered andg intersectℓb, whereas,d--e and f --g intersectsℓa to the right of wherec intersectsℓa. In order forc--d
not to crossd--e, c--d must intersectℓb to the left of whered intersectsℓb. However,f --g must then crossc--d.

For T7, if 2 < k < n, let φ obeyφ(a) ≥ φ(d) = φ(g) > φ(c) > φ(b) ≥ φ({e, f }). Assume w.l.o.g. thatC proceeds
left to right. ForC to avoid a self intersection,a--b intersectsℓc to the left ofc andℓd to the left ofd, whereas,d--e
intersectsℓc to the right ofc andℓb to the right ofb. For a--b to avoid crossingc--g, a--b must intersectℓg to the
left of g while d--e must intersectℓg to the right ofg sinceℓg = ℓd. However, this impliesf --g must cross the chain
a--b--c--d.

Corollary 15. A tree T (V, E) cannot be ULP with duplicate labels if T contains a subtree isomorphic to T7.

Proof. We give a non-planar labelingφ if T contains a subtree homeomorphic toT7. Any such homeomorphic subtree
must contain a subtreeT ′(V ′, E′) isomorphic toT7. This is because the homeomorphic subtree only has one vertex
of degree 3 that would be mapped to the corresponding root ofT7. Assign the vertices ofV ′ using a labeling from
Lemma 14 preventingT ′ from beingULP with duplicate labels. Since this is an isomorphism, we can assign the other
vertices ofT to any of the remaining levels. Given that the subtreeT ′ has a self-intersection withφ, so mustT .
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Figure 13: Level assignments that preventT7 from beingULP with duplicate labels.



Next, we show thatT7 is minimal with the following lemma.

Lemma 16. Removing any edge from T7 yields a forest of caterpillars.

Proof. Removing an edge fromT7 incident to its rootc; see Fig. 13(a), leaves a path and a lone edge. Otherwise,
removing an edge leaves a caterpillar.

Next, we prove that if a tree does not have a subtree isomorphic to T7 then it must be a caterpillar.

Lemma 17. An n-vertex tree T either contains a subtree isomorphic to T7 or T is a caterpillar.

Proof. One can repeatedly remove leaf vertices from any tree that isnot a caterpillar until one has a lobster. One can
continue removing leaf vertices from any lobster until one has the lobsterT7. The lobsterT7 is minimal since it cannot
have any more leaf vertices removed without becoming a caterpillar by Lemma 16. Hence, every lobster must contain
a subtree isomorphic toT7.

By definition, a caterpillar cannot contain a subtree that isisomorphic to a lobster such asT7. Hence, the set of all
trees is clearly partitioned between those with a subtree isomorphic toT7, which are notULP, and those without such
a subtree, which are caterpillars.

Combining Corollaries 13 and 15 with Lemma 17 gives our main theorem characterizingULP trees with duplicate
labels.

Theorem 18. The following three statements are equivalent:

1. T does not contain a subtree isomorphic to T7.

2. T is a caterpillar.

3. T is ULP with duplicate labels.

5. Linear Time Recognition of ULP Trees

While anyULP tree can be drawn in linear-time, the question remains how todetermine if a tree isULP before
doing so. The next theorem gives our linear-time recognition algorithm.

Theorem 19. Any ULP n-vertex tree T (V, E) can be recognized in O(n) time.

Proof. If the number of levels is less thann, this implies that there are duplicate labels in which case we only need to
determine ifT is a caterpillar. Otherwise, we also need to determine whetherT is a radius-2 star or a degree-3 spider.
This is done with the following pseudocode.

Is−Caterpillar
(

T (V, E)
)

⊲ T is a tree.
1. LetT ′ be the subtree ofT given byRemove−Leaves(T ).
2. Returntrue if T ′ is a path; returnfalse otherwise.

Is−Radius−2−Star
(

T (V, E)
)

⊲ T is a tree.
1. LetT ′ be the subtree ofT given byRemove−Leaves(T ).
2. LetT ′′ be the subtree ofT ′ given byRemove−Leaves(T ′).
3. Returntrue if T ′′ has only one vertexr and all the other vertices

in T ′ have degree 2 inT ; returnfalse otherwise.

Is−Degree−3−Spider
(

T (V, E)
)

⊲ T is a tree.
1. Returntrue if the maximum degree ofT is 3 and ifT has only one

vertex of degree 3; returnfalse otherwise.
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Is−ULP−Tree
(

T (V, E), k
)

⊲ T is a graph withk labels.
1. Returnfalse if T is not a tree.
2. If k < |V | return Is−Caterpillar(T ).
3. Otherwise, return Is−Caterpillar(T ) or Is−Radius−2−Star(T ) or

Is−Degree−3−Spider(T ).

If a tree is notULP, then we know by Theorems 11 and 18 that the tree must contain asubtree homeomorphic to
one of the forbidden trees. The next two theorems show how this can also be done in linear time.

Theorem 20. A subtree isomorphic to T7 can be found in any n-vertex tree T (V, E) that is not ULP with duplicate
labels in O(n) time.

Proof. By Lemma 17, ifT is not ULP with duplicate labels, thenT must contain a subtree isomorphic toT7. By
removing all leaf vertices fromT , we obtainT ′. We look for any vertex inT ′ of degree 3 or more, which then
corresponds to the rootr of the lobsterT7 in T ; see Fig. 14(a). This allows us to find a subtree isomorphic toT7 in
O(n) time as follows:

Find−T7−Subtree
(

T (V, E)
)

⊲ T is a tree that is notULP with duplicate labels.
1. LetT ′ be the subtree ofT given byRemove−Leaves(T ).
2. Letr be a vertex of degree at least 3 inT ′ and leta, s, andx be any

three neighbors ofr.
3. Letb, t, andy be any neighbors (other thanr) of a, s, andx in T .
4. Return the induced subtree ofT on the vertices{r, a, b, s, t, x, y}.

Theorem 21. A subtree homeomorphic to T8 or isomorphic to T9 can be found in any n-vertex tree T (V, E) that is not
ULP with distinct labels in O(n) time.

Proof. By Lemma 10, ifT is notULP with distinct labels, we may assume that it either contains asubtree homeo-
morphic toT8 or to T9. If there exists a homeomorphic copy ofT8 in T , then the edgeu--v between the vertices of
degree at least 3 is the only subdivided edge.

To find this subdivided edge ofT8, we first take any vertexu of degree 3 or more inT ′ (the subtree ofT obtained
by removing all of its leaf vertices); see Fig. 14(b). This corresponds to the root of the lobsterT7 in T8. Any remaining
vertex of degree 3 or more inT can then play the role ofv. ComparingT andT ′ in this way allows us to find a subtree
homeomorphic toT8 if one exists inO(n) time as follows:

Find−T8−Subdivision
(

T (V, E)
)

⊲ T is a tree that is notULP with distinct labels.



1. LetT ′ be the subtree ofT given byRemove−Leaves(T ).
2. Letu be any vertex of degree at least 3 inT ′.
3. Letv be any other vertex of degree at least 3 inT . If one does not

exist, return the empty tree.
4. Let p be the unique pathu to v in T , and letVp be the vertices ofp.
5. Let s andt be any neighbors ofv in T that are not inVp.
6. Leta andx be any neighbors ofu in T ′ that are not inVp.
7. Letb andy be any neighbors (other thanu) of a andx, resp., inT .
8. Return the induced subtree ofT on the vertices{a, b, s, t, x, y} ∪ Vp.

Finding a pathp in step 4 can be done inO(n) using depth-first search starting from vertexu. Following the
predecessor tree fromv to u gives the pathp.

To find aT9 subdivision, it suffices to find a subtree isomorphic toT9 sinceT9 only contains one vertex of degree
greater than 2. Any subdivided edges only introduce vertices of degree 2, hence, ifT contains a subtree homeomorphic
to T9, it must also contain a subtree isomorphic toT9.

We begin by removing all leaf vertices fromT in order to obtainT ′, and repeat this procedure onT ′ in order to
obtainT ′′; see Fig. 14(c). Since vertexr of degree 4 inT9 has one leafu at a distance of 3, two other leaf verticesb
andy at a distance 2, and one other leafw at a distance 1,T has a subtree isomorphic toT9 if and only if (i) r is in T ′′,
(ii) r has degree at least 3 inT ′, and (ii)r has degree at least 4 inT . Once we haver, we can find a subtree isomorphic
to T9 in O(n) time as follows:

Find−T9−Subdivision
(

T (V, E)
)

⊲ T is a tree that is notULP with distinct labels.
1. LetT ′ be the subtree ofT given byRemove−Leaves(T ).
2. LetT ′′ be the subtree ofT ′ given byRemove−Leaves(T ′).
3. Letr be any vertex inT ′′ with degree at least 3 inT ′ and with degree

at least 4 inT . If one does not exist, return the empty tree.
4. Let s be any neighbor ofr in T ′′.
5. Let t be any neighbor ofs (other thanr) in T ′, andu be some

neighbor oft (other thans) in T .
6. Leta andx be any neighbors (other thans) of r in T ′.
7. Letb andy be any neighbors (other thanr) of a andx, resp., inT .
8. Letw be any neighbor ofr (other thana, s, andx) in T .
9. Return induced subtree ofT on the vertices{a, b, r, s, t, u,w, x, y}.

6. Conclusion and Future Work

Level planarity adds two constraints to standard planarity: First, vertices are each labeled with an integer between
1 andk, assigning it to one ofk levels, where they-coordinate of a vertex is determined by its label. Second, edges
connect vertices of distinct levels and are composed of strictly y-monotone line segments.

We added the restriction that the underlying graph be level planar over all possible labelings. We termed level
planar graphs that meet this final restriction unlabeled level planar (ULP). We considered two cases: distinct labels
with one vertex per level, and duplicate labels with fewer levels than vertices.

This led us to consider the following questions that we have answered for trees:

(1) Which graphs areULP with distinct labels and which are not, and why?

(2) How can these graphs always be drawn for any labeling?

(3) Can these graphs be easily recognized?

(4) Are there graphs that are alsoULP for the case of duplicate labels?

We briefly summarize our results and their significance.



(1) ULP trees with distinct labels consist of caterpillars, radius-2 stars, and degree-3 spiders. Every other tree contains
one of the two forbidden treesT8 andT9. This is akin to Kuratowski’sK5 andK3,3 forbidden subdivisions of planar
graphs.

(2) Each type ofULP tree can be drawn in linear-time and space on an integer grid for any labeling. Our algorithms
produce consistent drawings in which the same graph is drawnin a similar manner for any labeling. This has the
added benefit of allowing dynamic visualization in which thelabelings can be permuted arbitrarily.

(3) ULP trees can be recognized by determining in linear-time if thetree contains a subtree homeomorphic to one
of the forbidden trees. We have an efficient implementation of all these algorithms that dynamically determines
whether a given tree isULP, and if so, provides a compact level planar drawing. If not, an instance of one of
the forbidden subtrees is highlighted. A fully functional implementation, along with movies, screen shots, and
downloadable example graphs highlighting each algorithm can be found athttp://ulp.cs.arizona.edu.

(4) Caterpillars are the only trees that are alsoULP when multiple vertices can have the same label. This impliesthat
level caterpillars are the only trees that are always level planar.

In the conference version of this paper [9], only the first question was fully addressed, while the second and third
questions were only partially addressed, and the fourth question was not considered. Recently, the first two questions
have been answered for general planar graphs [12], which is an extension of this work here, although the remaining
two questions have yet to be addressed in the general case. The set of forbiddenULP graphs given in [12] includes
the forbidden treesT8 andT9. The corresponding characterization for generalULP graphs relies on the correctness of
the results given here forULP trees. Moreover, the fact that neitherT8 nor T9 is ULP is fundamental in proving the
completeness of that characterization and the proofs in [12], which does not repeat the arguments given here.

In addition to generalizing all of theULP tree results toULP graphs, future work includes extending these re-
sults for other types of planarity, such as radial level planarity and cyclic level planarity. AsULP trees were useful
for finding newMLNP tree patterns [13],ULP graphs should be useful for finding other missing level non-planar
patterns [1].
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