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Abstract

Consider a grapls with vertex setV in which each of then vertices is assigned a number from the {det. ., k}

for some positive integdt. This assignmeng is alabeling if all k numbers are used. # does not assign adjacent
vertices the same label, theénforms aleveling that partitionsV into k levels. If G has a planar drawing in which
they-coordinate of all vertices match their labels and edgesiaen strictlyy-monotone, thes is level planar. In
this paper, we consider the class of level trees that aré pd&ear regardless of their labeling. We call such trees
unlabeled level planar (ULP). Our contributions are three-fold. First, we describechhirees aréJLP and provide
linear-time level planar drawing algorithms for any labgli Second, we characterizé&P trees in terms of forbidden
subtrees so that any other tree must contain a subtree haonglinto one of these. Third, we provide a linear-time
recognition algorithm fotJLP trees.

1. Introduction

When drawing a planar grapB(V, E) in the xy-plane, a more restrictive form of planarity can be obtaibgd
insisting on a predetermingdcoordinate for each vertex i in which all the edges ifE are drawn straight with
a non-zero slope. This is equivalent to placing each ventearee ofk horizontaltracks, ¢; = {(x, j)|x € R} for
j € [1..K], and connecting each pair of adjacent vertices with a legntent. The straight-edge condition can be
relaxed to allow edge bends provided the edges remainlgtyichonotone. The vertices atabeled by their track
number. This labeling is aleveling provided no pair of adjacent vertices are assigned to the saok. The tuple
G(V, E, ¢) forms alevel graph. If a planar drawing o6 can be obtained in spite of these restrictions, {Bés said to
belevel planar.

Determining whether a given graghis level planar ork levels can be dficult. The more restrictive problem
LEVELED-PLANAR of deciding whether a given directed graghével planar in which all the edges are directed
downwards and are only between vertices of adjacent leeadben shown to be NP-complete [19]. Howeven, if
levels are used, one for each vertex, a labeling in wkidh level planar is easily obtained. Any straight-line plana
drawing ofG can be rotated until the vertices have distircbordinates, the order of which gives the desired labeling

We call alevel tree T(V, E, ¢) that is level planar over all possible such labeliggan unlabeled level planar
(ULP) tree. We characteriZgLP trees in terms of forbidden subtrees and provide lineae-t@eognition and drawing
algorithms for any labeling.

1.1. Background and Motivation

Visualizing hierarchical relationships has historicdllgen a strong motivating factor in the study of the planarity
of level graphs. Many hierarchical models such as those imsedcial networks [2] aim to minimize the number
of levels while preserving planarity whenever possiblegigama’s algorithm [24] does this by favoring the use of
shorter edges over longer edges in the displaydifected acyclic graph (DAG). Given that, often there are relatively

UThis work is supported in part by NSF grants CCF-0545743 a@R-/8222920.
*Corresponding author.
Email addresses: aestrell@cs.arizona.edu (Alejandro Estrella-Balderramajfowler@cs.arizona.edu (J. Joseph Fowler),
kobourov@cs.arizona.edu (Stephen G. Kobourov)

Preprint submitted to Computational Geometry December 22, 2008



few levels on which one wants to place vertices. As a consem@esearching properties of level graphs vijV/|)
levels has not been actively pursued in the area of graplaNisdion.

However,simultaneous geometric embedding, which is related to geometric thickness [6, 8], has led t@a n
application of level graphs [3] with one vertex per leveim8ltaneous embedding generalizes the notion of planarity
when considering multiple planar graphs. When simultasgmmbedding a set of planar graghseach om vertices
distinctly labeled by the numbers.[d], all the vertices with the same label must coincide. Whilg aingle planar
graph can be drawn using only straight-line edges [11], taaimg planarity for each graph without edge bends may
not always be possible. Determining the pairs of graphs fuckvthis can be done is NP-hard [10]. For instance,
while it is known that two trees cannot always be drawn siemdbusly without crossings or edge bends [22], it is
unknown which trees always share a simultaneous geometbe@ding with any path.

When simultaneously embedding a path with a tree, one appriggo attempt to draw the path monotonically.
This gives a labeling in which the vertices are numberedeetially according to the order they occur along the path.
If the tree is level planar for this labeling, then Eaéeal. [7] show that any such level planar drawing with bends can
be redrawn irO(|V|) time without bends. This allows a simultaneous geometribedding with a path in which the
path zig-zags downward through all vertices of the treesTiais the consequence that the sdiiloP trees with one
vertex per level is precisely the set of trees that have alsamepus geometric embedding with every monotone path.

1.2. PreviousWork

Jungeret al. [20] provide linear-time recognition and embedding altoris for level planar graphs. Here the
embedding is the left-to-right ordering of edge intersmdi with each track. This corrects a PQ-tree algorithm to
test level planarity by Heath and Pemmaraju [17, 18]. DiBttand Nardelli [4] gave the first PQ-tree test for
hierarchies—level graphs in which there existsyanonotone path to each vertex from a source vertex on theruppe
most track. Eadeat al. [7] show how to obtain a straight-line level planar drawingi(|V|) time given a level planar
embedding, though it may require exponential area. If thmber of levels is constant, then Dujmogtal. [5]
provide a linear-time level planarity testing algorithningsfixed parameter tractability. Healy and Kuusik [15] give
O(IV/?) recognition andD(|V|*) embedding algorithms fqroper level planar graphs (in which all edges are between
adjacent levels) using vertex exchange graphs. Harrigdmaaly [14] improve the embedding algorithm@g|V|?)
time making this a practical alternative to graph-drawilggethms using PQ-trees that ardftiult to implement and
have been shown to be error-prone [21].

Further, Di Battista and Nardelli provide a setlefel non-planar (LNP) patterns [4] that fully characterize level
planar hierarchies. However, the level non-planar suliggdipese patterns match are not necessarily edge minimal.
Healy et al. [16] extend theLNP patterns for hierarchies to provide a setmifiimum level non-planar (MLNP)
patterns in order to characterize all level planar graphgse& subgraph patterns are analogous to Kuratowski’'s resul
that any minimal non-planar graph is either a subdividgdr Ks3 [23]. However, these patterns are specific to a
given labeling and are not based solely upon the underlyiaghg This is unlike th&JLP characterization for trees
that is independent of any labeling and only relies on thecsitire of the tree in question. The setMENP patterns
have been shown to be incomplete. Two n@NP tree patterns were given in [13] based ufdena forbidden tree
for the set ofULP trees; see Fig. 1. This has reopened the problem of detergnadiisuchMLNP patterns.

1.3. Our Contribution

We characteriz&LP trees first for the case of one vertex per level and then foc#se of more vertices than
levels. Our contributions are three-fold.

1. First, we describe the set of unlabeled level plabiP) trees as either (i) aaterpillar (a tree in which the
removal of all the leaf vertices yields a path), (iijjadius-2 star (any number of paths of length 1 or 2 with a
common endpoint), or (iii) @egree-3 spider (three paths with a common endpoint); see Fig. 1. We note that
(i) and (iii) are onlyULP with one vertex per level. For eadhLP tree, we provideD(|V|)-time level planar
drawing algorithms on integer grids for any labeling.

2. Second, we characterizi P trees with one vertex per level in terms of two minimal fodet treesTg and
Tg; see Fig. 1. If multiple vertices per level are permittea, thrbidden tred; characterizebILP trees.

3. We also provide &(|V|)-time recognition algorithm foULP trees. If a tree is ndiLP, we search for a subtree
homeomorphic to one of the forbidden trees, which servescastéicate for the tree not beirigl_P.
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Figure 1: A Venn diagram of the universe of trees partitioired the trees containing a subdivision B andor Ty (the gray rectangles minus
the circles) and the trees not containing eitfigror Tg, which are caterpillars, radius-2 stars, and degree-3spidlrhese three classes of trees
comprise the set of unlabeled level plandtP) trees with one vertex per level.

2. Preliminaries

Historically, a level graph is defined as a directed grapln &ifpartitioning of vertices into levels in which the
edges are oriented to connect vertices of lower levels tticesrof higher levels. Since we are only concerned with
the underlying undirected graph, we define a level graphawitiedge orientation. A-level graph G(V, E, ¢) onn
vertices has a leveling : V — [1..K] such thatp(u) # ¢(v) (rather thans(u) < #(v) in the case of directed graphs)
for every edgey,v) € E.

The levelingg partitionsV into k independent sedé;, Vo, ..., Vi, which form thek levels of G. A level-j vertex
vis on thej™ level V; of G if ¢(v) = j such thatv; = ¢71(j). If ¢ is an injection, each level contains at most one
vertex. If there is one vertex per level, this implies nin which casep is a leveling withdistinct labels. Otherwise,

k < nand¢ hasduplicatelabels.

A level graphG has alevel drawing if (i) every vertex inV; can be placed along theack £; = {(x, j)|x € R}
and (ii) the edges can be drawn as strigignonotone connected sequences of line segments. Heredpeigts of
each segment lie on distinct tracks so that each edge interary given track at most once. The order in which the
edges intersect the tracks along the posikhdirection gives devel embedding of G. A level graphG is level planar
if it has a level drawing without edge crossings, which cepands to devel planar embedding of G. A level planar
graphG is realized with a level planar drawing, which formsrealization of G. A graphG is unlabeled level planar
(ULP) if it is level planar over all possible labelings.

A chain C of G is a simple path denoted-v,- - -- -v;. The chairu-v represents the edge, (/). A vertexv of C
is g-minimal (or ¢g-maximal) if it has a minimal (or maximal) label of all the vertices@©f A vertex is¢-extremeiif it
is ¢-minimal or g-maximal.

Subdividing an edge , v) in a graphG(V, E) replaces it with edgesi(w) and (v, V) in E by adding vertexv to
V. A subdivision is the result of subdividing any number of edges. A gr&¥, E) is isomorphic to G(V, E) if there
exists a bijectionf : V — V such that ¢, v) € E if and only if (f(u), f(v)) € E. GraphG(V, E) is homeomorphic to
graphG(V, E) if there is an isomorphism between subdivision&aindG.

The tupleG(V, E, ¢) is proper if each edge, v) in E is ashort edge such thgp(u) — ¢(v)| = 1. Any improper
level graph can be made proper by subdividing daaly edge [¢(u) — ¢(v)| > 1) at the points it crosses each track.
These points correspond to edge bends if edges are not diaighs

A caterpillar is a tree in which the removal of all its leaf vertices yieldsadh, i.e., itsspine. A lobster is a tree in
which the removal of all its leaf vertices yields a catesgpillbut not a path. Theccentricity of a vertexv in a treeT
is the length of the longest path withas endpoint. Theadius of T is the minimum eccentricity of all vertices ih.

A radius-2 star (degree-3 spider) is a tree of radius 2 (arbitrary radius) in which all ver@re degree 1 or 2 except
for the vertex, theroot, of degree greater than 2 (of degree equal to 3).



3. ULP Treeswith Distinct Labels

We first present the drawing algorithms fOLP trees with one vertex per level and then their forbidden tree
characterization.

3.1. Drawing ULP Treeswith Distinct Labels

Many of our algorithms take a tree as an input and needfitently remove degree-1 vertices. This is nontrivial
since each deletion can require linear-time in the worst dfastandard adjacency lists are used to represent the tree.
The next lemma shows how to remove all leaf vertices of a tfiéeiently.

Lemma 1. All leavescan be removed from an n-vertex tree in O(n) time.

Proof. Removing a leaf from a tree can be don&ifi) time if T has a special adjacency list representation. For each
vertexu in the list of vertexv, we store a pointer to the location wfn the list ofu. Additionally, the adjacency lists
are doubly-linked to allow for ficient deletion. The following pseudocode uses this reptasien to run inO(n)
time.

Remove—Leaves(T (V, E))
> Tisatree.
1. For each verten with an adjacency list with exactly one vertex
2. Delete the list ofi retaining the pointep to v that was in the list.
3.  Usepto removeu from the doubly-linked list of7 in O(1) time. O

The following lemmas describe which trees &MeP and how to realize them in linear time. Brassl. [3] gave
an algorithm that produces a simultaneous geometric enihgdfla caterpillar and a path envertices on am x 2n
grid. We give an algorithm for producing a more compact drwiith the next lemma.

Lemma 2. An n-vertex caterpillar with an m-vertex spine can be realized with straight-line edgesin O(n) time on a
2mx n grid for any distinct labeling.

Proof. The spinevi-vo-- - - -V, is drawn with vertices placed at oddcoordinates. For each spine vertgxleaf
vertices are placed one unit to the right at execoordinates. If a leaf would overlap a spine edge, then itlldibe
placed directly above or below instead; see Fig. 2. The following pseudocode taRéy time as the location of
each vertex is determined (1) time.

= =

Figure 2: A realization of a caterpillar with distinct labain a 8x 30 grid.



Draw—Caterpillar(T(V, E, ¢))
> T is a caterpillar with distinct labels.
LetS, vi-vo-- - - =vp, be the spine given bigemove-Leaves(T).
Draw spineS by placingv; at(2i — 1, ¢(v;)) fori € [1..m].
Draw edgey;-vi,1 fori € [1..(m— 1)].
For eactly; fori € [1..m]:
For each leaf that is adjacent tw;:

Unless leaf would lie onvi-vi,1, placet right of v; at(2i, ¢(£)).

Otherwise, place ledfat (2i — 1, ¢(¢)) above or below;.

Draw edges-¢. O

ONog~WDE

Lemma 3. An n-vertex radius-2 star can be realized with straight-line edgesin O(n) time on a (2n + 1) x n grid for
any distinct labeling.

Proof. The x-coordinates range fromn to n with the rootr having anx-coordinate of 0. Any adjacent leaf vertices
of r have amx-coordinate of-1, one unit to the left of. Any other neighbou of r will either have arx-coordinate of
1, one unit to the right of, if the label of the leaf at a distance 1 from is greater tham or anx-coordinate of-1,
otherwise.

Each leaff at a distance 2 fromis given anx-coordinate so that the edgeu has a slope of 1, i.eAy = AX; see
Fig. 3. Thex-coordinatel of £ can be found by solving the equatiéin- uy, = ¢(¢) — ¢(u) to getty = ¢(£) — p(U) + Uy.

This means thafyx = ¢(¢) — ¢(u) + 1 if ¢(£) > ¢(u), otherwiseLx = ¢(£) — #(u) — 1. The following pseudocode
takesO(n) time since the coordinates of each vertex are determin@gliptime.

Draw—Radius—2-Star(T(V, E, ¢))
> T is a radius-2 star with distinct labels.
Placer, the unique root vertex of maximum degree(@t¢(r)).
For each vertey that is adjacent to:
If uis a leaf vertex, place at (-1, ¢(u)) and draw edge-u.
Otherwise, let be the leaf vertex that is adjacentuo
If ¢(€) > ¢(u), placeu at (1, ¢(u)) and? at(¢(€) —p(u)+1, #(£)).
Otherwise, placa at(-1, ¢(u)) and¢ at(¢(€) — ¢(u) — 1, ¢(¢)).
Draw edges-u andu-¢. O

NougsrwhE

n+ 141ttt FH A T EE AT TR T -1 O--0---0-00-0---0

Figure 3: A realization of a radius-2 star with distinct liben a 59x 29 grid. The gray nodes indicate the intersection pointsys$ of slope 1
emanating from each leaf to imagined level-0 and lewei-() that are drawn with dashed lines.



Lemma 4. An n-vertex degree-3 spider can berealized in O(n) time on an n x n grid with one bend per edge for any
distinct labeling.

Proof. We want to greedily draw with one bend per edge starting from the ro@nd proceeding outwards vertex
by vertex along each chain. However, we cannot draw the shadtependently. Instead, we must alternate between
drawing the three chains. We need to guarantee that the ageiv of a chain can always be placed either one unit
to the left (or to the right) of the leftmost (or the rightmppbint of the subtree drawn so far without introducing a
crossing.

We present this algorithm in four stages. First, we give tlghdevel pseudocode and the two invariants it
maintains. We then show how to start drawing the degree<@espn order to initially achieve these invariants.
Afterward, we turn to more detailed aspects of the algorithivie determine to what extent we need to draw a given
chain before switching to draw the next chain, which is dedaby the invariants we maintain. Finally, we conclude
with how to draw each edge so that it does not cross any of #géqursly drawn edges.

A chainC is drawn one vertex at a time, which is expansion of C. Each subsequent vertex is placed one unit
to the left or to the right (continuing in the initial direoti) of the previously placed vertex. However, we stop once
the last placed vertex & becomeg-extreme. If the chai has any vertices left to place, then the ch@irwhose
last placed vertex inot ¢g-extreme is the chain to expand next in tipposite direction. Otherwise, once a chdinis
completely drawn, one of the remaining two chains is freglyamded to the left while the other chain is expanded to
the right.

To guarantee that one chain can always be expanded to tloe tefthe right, two invariants need to be maintained
after each vertex is placed:

(1) Two of the leaves andt of the subtred” drawn so far arg-extreme.

(2) The tracké, of the third leafu of the subtred” either does not intersect any other parfféfto the left or to the
right of u (leaving a direction that the chain ofcan continue to be expanded); see Figs. 4(e), 7(d).

These invariants allow the chahwith u to be expanded in the free direction until its last placedexarbecomes
¢-extreme as in going from Fig. 4(a) to (b) (hesd, andu are vertices 9, 12, and 11 in Fig. 4(a), respectively,\and
is vertex 8 in Fig. 4(b)). Them replaces one of thg-extreme vertices or t so that invariant (1) continues to hold.
W.l.o.g. assume thatis no longefg-extreme (in Fig. 4(by, vertex 8, becomes the nefextreme vertes).

Before placing the last vertexof C, the track ofs, £, does not intersect any other parfiof the subtree drawn so
far, sincesis ¢-extreme. The chai@ can intersecfs on at most one side afafter placingv, blocking that direction.

t
n ®@u

0 T—=

(a) (b) (c) (d) (e)

Figure 4: Step-by-step realization of a worst-case deg@regider with bends.
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Figure 5: Four cases of expanding chainsd@m) < ¢(Vmin) < ¢(Vmid) < #(Vimax)- All four can lead to crossings on the third expansion witho
taking precautions.

As a result, invariant (2) continues to hold with the sldow playing the role of the new. The high-level algorithm
Draw—Degree—3—-Spider maintains these two invariants by alternating between mdipg chains to the left and to
the right until a vertex becomgsextreme as depicted in Figs. 4(e), 7(d).

Draw—Degree—3—Spider(T(V, E, ¢))
> T is a degree-3 spider with distinct labels.
1. LetT’ « Start—Drawing—Degree—3-Spider(T).
2. LetU « {st,u} be the leaves of’ such thaty(s) < ¢(u) < ¢(t).
3. Setdirection « right
4. Whileuis not a leaf vertex:
5. Setv « Expand—Chain(T, T’, u, direction).
6 If p(v) < ¢(S) or p(v) > ¢(t), then
7 Updateu « sands « vif ¢(v) < ¢(9).
8 Updateu « t andt « vif ¢(Vv) > ¢(t).
9. Changadlirection (right to left, and vice versa).
10. Else, updata « v.
11. Whilesis not a leaf vertex:
12. Sets « Expand-Chain(T, T’, s, left).
13. Whilet is not a leaf vertex:
14. Sett — Expand—Chain(T, T’, t, right).

Initially drawing a degree-3 spider for which the two inaris hold is non-trivial as Fig. 5 illustrates. Hetgn,
Vmid, andviax are the vertices that are adjacent such thatp(Viin) < #(Vmia) < #(Vmax)- Fig. 5(a) gives an example
of these three vertices witkicoordinates-1, 1, and 2, respectively.

Sincevmay is the onlyg-extreme leaf vertex, either the chainwfy or vyin can be expanded next. However,
Fig. 5(b) and (c) depict two cases in which the chaiwgj is first expanded to the left leaving eith&gn or Viax to
be expanded next to the right. This leads to a crossing orhtteeeéxpansion. Fig. 5(d) and (e) depicts similar cases
in whichvyin is first expanded to the left. In all four cases a crossingtie@uced. To prevent this, care must be taken
while initially placing these three vertices.

If ¢(Vimin) < &(r) < ¢(Vimax), then both invariants hold by placing,, andvyax one unit to the left and to the right
of r, respectively, an@mq to the right ofviuy; see Fig. 6(a). Otherwise, if all three vertices have laless than or
greater tham as in Fig. 6(b), then invariant (1) does not hold. Expandiitizee of the other two chains in order to
achieve invariant (1) may prevent invariant (2) from beiogiavable, which is the undesirable scenario of Fig. 5. To
avoid this, the chai€ that reaches the extreme pomtq-.me before it terminates or first crossgsi.e., the track of
r, is drawn first so that it lies between the other two chaings phevents either of those two chains from becoming
trapped by an initial portion of. Figs. 7(a)—(c) illustrate determining this extreme p@igrene in Fig. 7(b) among
the initial portions of the three chains drawn with solid edgThe solid edgesftiér in Fig. 7(d) by showing the initial
part of the degree-3 spider that first satisfies both invésian

Let Vexreme € {Vimin, Vmid> Vmax} D€ the initial vertex of chail€ with the most extreme verteeyreme. We first
expand chaitC to the right ofr until C reachesvexreme. After expanding either of the other two chains to the left so
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Figure 6: Four initial cases for a degree-3 spider. Invarfapholds for (a) but not for (b).

that its last placed vertew.;; becomes the othef-extreme after crossing, invariant (1) holds (WithWeyreme and
Wieft playing the roles of verticesandt in invariant (1)). Placing the third initial vertexigr one unit to the right of
r then achieves invariant (2) (withig playing the role of vertex in invariant (2)). Afterward, both invariants are
satisfied and the next expansion starts from the right. Bhi®ne with the following pseudocode.

Start—Drawing—Degree—3—-Spider(T(V, E, ¢))
> Initially draw degree-3 spideF until both invariants hold.
1. Place, the root vertex of degree 3, @, ¢(r)).
2. LetU « {Vmin, Vimid, Vmax} b€ the vertices that are adjacent teuch
thaté(Vimin) < ¢(Vimia) < ¢(Vmax)-
LetT’(V’, E’) be the tree drawn so far whevé « {r} andE’ « &.
If ¢(Vimin) < ¢(1) < $(Vmax), then
Draw—Bent—Edge(T, T’, I, Vnin, left),
Draw—Bent—Edge(T, T’, r, Vmax, right), and
Draw—Bent—Edge(T, T’, r, Vqig, right).
Otherwise,
SetWexreme < I, the current vertex that is the masextreme:
For eaclvin U:
SetW,,ireme — Get—Extreme(T, r, V).
If §(r) < P(Wextreme) < ¢(Weytreme) OF
(1) = P(Wextreme) > ¢ (Woyreme)»
then seWeyreme < Weyireme 8NAVextreme < V.
10. Letviert andvyign be the two vertices itV other tharvexreme.
11. DrawVexreme With Draw—Bent—Edge(T, T, I, Vextreme, fight)
and expand witlExpand—Chain(T, T’, Vextreme, Mght, Wextreme)-
12. Drawvyigy with Draw—Bent—Edge(T, T, 1, Vrignt, right).
13. Drawvies; with Draw—Bent—Edge(T, T, I, Vieft, left)
and expand witlExpand—Chain(T, T’, Wieft, left, null).

Pw
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HereStart—Drawing—Degree—3—Spider determines the initial extreme of a chain with the followprgcedure.

Get—Extreme(T(V, E, ¢), 1, u)
> Find extreme of chain with vertaxin a degree-3 spidér with rootr.
1. Setextreme < ¢(u), the current extreme to the labelaf
2. While there is another next vertexalong the chain starting with
that does not cause the chain to crgsshe track ofr:
If ¢(u) > ¢(r), increaseextreme to ¢(V) if ¢(v) > extreme.
Otherwise, decreasgtremeto ¢(v) if ¢(v) < extreme.
Returmweyreme, the vertex with the label aéxtreme.

arw
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Figure 7: Determining the initial extreme used to start dnaya degree-3 spider.

Expansion of a chain is then accomplished by the next praeedu

Expand—Chain(T(V, E, ¢), T'(V’, E’), u, direction, w)

> T’ is the subtree of drawn so far. Expands the chain startingi &b
the right ifdirection is right, and to the left otherwise. Specifying the
optional vertexw forces the expansion to go at leastit@ven after a
vertex of the chain becomesextreme.

Letpmax andenin be the maximum and minimum labels\éf U {wj}.

For the next vertex that is adjacent tain T that is not inV’:
Draw—Bent—Edge(T, T’, u, v, direction) and seu « v.

Until ¢(v) > dpax OF ¢(V) < dmin OF Vis wor vis a leaf vertex.

Returnv, the last vertex that was addedTfa

AR

Finally, we consider how to draw each edge with a bend. If no@faT’ lies directly to the left (or to the right)
of the last vertexu of the chain, them could reach vertex. Route the edge to the left (or to the right) franthat
is above (or below) all the other vertices to a bend diredtigve (or below). From the bend, the edge proceeds
directly downwards (or upwards) to

Bendb has the samg-coordinate as. They-coordinate ob is determined by whether the previous venef v
is above or below. If ¢(u) > ¢(v), we placeb one unit below, otherwise, we plack one unit abovel. This is so
that if u is ¢-extreme, the line segmentb will not cross any of the edges of the subti&edrawn so far.

The x-coordinate ofv is one greater (or one less) than the maximum (or minimgtyordinate of the treg’
drawn so far if the edge is to be drawn to the right (or to thg;leke Fig. 8(a) and (b). This procedure of drawing
edgeu-v with bendb is given by the following pseudocode.

Draw—Bent—Edge(T(V, E, ¢), T'(V’,E’), u, v, direction)

> T’ is the subtree of drawn so far. Vertex has been placed and
vertexv is to be drawn to the right af if direction is right, and to
the left ofu, otherwise.
1. LetXmax andXmin be maximum and minimum-coordinates of’.
2. If directionisright, setvy « Xmax + 1, otherwise seiy « Xmn — 1.
3. If ¢(u) < ¢(v), sethy « ¢(u) + 1. Otherwise, sdby, «— ¢(u) — 1.
4. Placev at(vx, ¢(v)), bendb at(vy, by), and draw edges-b andb-v.
5. UpdateT’ by addingvto V' and (1, v) to E’.
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Figure 8: In (a) and (b), edge-v is drawn to the left and to the right afusingDraw—Bent—Edge. In (c), the right chain is expanded to the right
from u usingExpand—Chain until v replacess as theg-maximum.

HereDraw—Bent—Edge draws the edge-v with bendb so thatb is either one unit above or belowdepending
on whethew is above or below. This avoids any crossings since invariant (2) ensures ntoopd’ lies along the
track ofu in the direction of the expansion.

Start—Drawing—Degree—3—Spider takesO(n) time since each vertex is placed@{l) time and each of the three
calls to Get—Extreme take O(n) time. Afterward, each vertex is placed @(1) time in Draw—Degree—3—Spider,
leading to an overalD(n) running time. Since the drawing is widened one unit pereserthe drawing uses x n
space. O

Lemma 5. An n-vertex degree-3 spider can be realized with no bends in O(n) time though it may require up to
O(n!) x n area for some distinct labelings.

Proof. The algorithm of Lemma 4 can be modified to use straight-lohges with the following edge drawing algo-
rithm in lieu of Draw—Bent—Edge.

Draw—Straight—-Edge(T(V, E, ¢), T'(V’,E’), u, v, direction)
> T’ is the subtree of drawn so far. Vertex has been placed and
vertexv is to be placed next.
1. LetXmax andXmin be maximum and minimum-coordinates of’.
2. If directionisright, let x, > Xnax be the least such integer in which
edgeu-v would not intersect”.
3. Otherwise, lek, < Xqyin be the greatest such integer in which edge
u-v would not intersect”’.
4. Placev at(x,, ¢(v)) and draw edge-v.
5. UpdateT’ by addingvto V' and (1, v) to E’.

Figure 9 gives a degree-3 spider that requires exponentiahehen drawn using this modified algorithm. At each
step in the algorithm, there is only one choice when pladiegtext vertex so that the three chains spiral about each
other.

We bound the value of, at stepj of the algorithm. Let; andw; denote the height and width of the subtree
drawn up and to step Leta-b-c, o-p-q, andu-v-w be the last two edges of the three chains as shown in Fig. 9 in
which edges-b, o-p, u-v, b-c, p-q, andv-ware drawn in stepsi + 1,...,i +5, respectively. For the last edgew
in stepi + 5 not to have a bend, it cannot intersect any part of the traemso far. This implies thatw must lie
below theg-minimal vertexb from stepi. Sincev was placed in step+ 2, the diference between thecoordinates
of v andb (subtracting the extra widt;,; — w; from drawingo-p in stepi + 1) is

Xy — Xp = (Wirp — W) — (Wipq — W) = Wigo — Wigq.



Figure 9: A degree-3 spider that can requi@!) x n space when realized with no bends.

Similarly, the diference between thecoordinates ofv andv (subtracting the extra width;, ,—w;i.,» from drawing
p-gin stepi + 4) is
Xw — Xy = (Wi+5 - Wi+2) - (Wi+4 - Wi+2) = Wit5 — Wisg.

The slope of the edge-w is strictly greater thar1/(X, — Xx), which gives the most compact drawing. The height
difference betweew andyv is the height at step+ 5 minus the extra height of 1 from placiggn stepi + 4. Hence,

Xw — Xv = (Yw — W)/ (slope ofv-w) = (hiys — 1) - (X, — Xo).

Sinceh; = j, we combine the previous three equations to solvevfpy as

Wits (i + 4)(Wis2 — Wir1) + Wiig

(i + 4)(Wis2 — Wis1) + (i + 3)(Wir1 — W) + Wi3

i+4

Z K(Wi—2 — Wk_3).

k=4

Substituting forj = i + 5, we determine the recurrence foy to be

|
=

wj o = K(Wi—2 — Wi—3)
4

=
1l

= (J-Dwjs= (] —Dwja+ (] —2Wja— (] —2Wjs+...—-W

= (J-IWj3-Wj4-Wjs—...—W

j-4
= (- Dwja- ) Wk
k=1



Finally, we solve the recurrence for the increase in witllat stepj as

Wj —Wj_1

i-5 j-5
(5 = Dwis —wia = > wa) = (5~ 2wja = ) wi)
k=1 k=1

(J = D)wj_3—w;j_a)

Aj (J-DA==0-D(-4-1

Hence, we haveigl)! <(J=8(j-7-1<(j-d<Aj <(j-1)as bounds. This shows that this
tree requires exponential area using this modified algworitiihe width of the degree-3 spider at stepan then be
bounded as

i-1
M=;H=U—DU—M<H

This tree is a worst-case for our algorithm in terms of the ant@f area used in each step. We observe that
by placing thej" vertex of any degree-3 spid&rat a distance ofj !| from r in the appropriate positive or negative
x-direction, which is more than strictly necessary, we arargnteed to avoid a crossingTn Hence, the algorithm
uses at mosti2 x n area. O

Combining Lemmas 2, 3, 4, and 5, we have our first theorem.

Theorem 6. Caterpillars, radius-2 stars, and degree-3 spiders are all ULP with one vertex per level. Each can be
realized in O(n) time.

3.2. Forbidden Trees for ULP Trees with Distinct Labels
We next introduce the forbidden subtrdgsand Ty shown in Fig. 10.
Lemma 7. Thereexist labelings preventing Tg and Tg from being level planar when distinct labels are used.

Proof. First, we consideTgin Fig. 10(a) with a distinct labeling satisfyifg(a), #(f)} > ¢(d) > {#(9), #(c)} > ¢(b) >
{¢(€), p(h)} (or its reverse). We contend that these labelings are l@refatanar. To prevent the chaanb-c-d-efrom

Ty
O,
Ty
(c) O,
() (9) () (5 (D)
@O 0O @ ©
®

@)

Figure 10: Distinct labelings preventirigg andTo from beingULP.



self intersectinge must lie between the intersectionsasb andd-e with the tracké; of c. The edgec-g forcesg to
also lie between the intersectionsasb andd-e with the trackéy. There are two cases: either §)ies between the
intersection ofa-b with ¢4 and the intersection af-d (if ¢(c) < ¢(g)) or b-c (if ¢(c) > ¢#(g)) with £y, in which case
g-h must cross an edge of the chairb-c-d, or (ii) g lies between the intersections@fd (if ¢(c) < ¢(g)) or b-c (if
#(C) > ¢(9)) with {5 and the intersection af-e with £y, in which caseg-f must cross an edge of chédirc-d-e.

Next, we considefg in Fig. 10(b) with a distinct labeling satisfying the pattader{¢(a), #(f)} > ¢(h) > ¢(d) >
#(c) > ¢(b) > #(e) > {#(g), #(i)} (or its reverse). Such a labeling can also be shown to levelpt@nar. Again to
prevent the chaia-b-c-d-e from self intersectings must lie between the intersectionsaab andd-e with track ..
W.l.o.g. assume that-b intersectd. to the right of wheral-e intersectd.. To prevent the chaia-b-c-d-e-f from
self intersecting, there are two cases to consider: either{ intersects. to the left of wherea-b intersects, or
(ii) e-f intersect¥, to the right of wherad-e intersects.. For case (i)c-g must either intersed to the left ofe,
in which case it must cross-f, or to the right ofe, in which case it must crogb-e. For case (ii), eitheh lies to left
of wherea-b intersectg}, in which casec-h must cross-b, h lies to right of wheree-f intersectd}, in which case
c-h must crose-f, or h lies between whera-b ande-f intersect/, in which caseh-i must cross an edge of chain
a-b-c-d-e-f as in Fig. 10(b). O

This leads to the following corollary:
Corollary 8. If atree contains a subtree homeomorphicto Tg or Tg, then it cannot be ULP with distinct labels.

Proof. We provide a labeling of a treeT containing a subtree homeomorphic to a level non-planafitrevhich can
be eithefTg or Ty by Lemma 7. Let be the homeomorphism that maps an edgE to the path il and a vertex in
T to the endpoint of the path ifi. Label the vertices of using an appropriate labeling from Lemma 7 that forces
a crossing inf .

We maintain the same relative ordering of the label§ s inT. In particular, we wang(h(u)) < ¢(h(v)) if and
only if ¢’(u) < ¢’(v) for each edgey,v) in T. For each patih((u,V)) = puy) = Vi-Va----=Vk in T that corresponds
to an edgef,v) in T, we wantg(v) < ¢(V2) < --- < ¢(w) if ¢’'(U) < ¢'(v). We can assign the other verticesTof
not in the image oh arbitrary labels. Then every edge ¢) in T corresponds to a strictly monotone p@ify) in T
preserving the non-planarity of the realizatioriof O

We next show thals andTg are minimal level non-planar trees.
Lemma 9. Removing any edge from Tg or T yields a forest of ULP trees.

Proof. If removing an edge fronig of Fig. 10(a) decreases the degree of the verticesdor g, then the resulting
graph is either a forest of (i) a caterpillar and a lone edffef{@amovingb-c or c-d), (ii) two paths (after removing
c-g), or (iii) a degree-3 spider (after removing eithierg or g-h). Otherwise, removing eithex-b or d-e, which
maintains the degree of bottandg, yields (iv) a caterpillar with a spine of length 5. MovingtoiTy of Fig. 10(b), if
removing an edge maintains the degree of vettéken the resulting graph must be a forest of either (i) arpdiar
(after removinga-b, d-e or h-i) and the possible lone edgef (if d-e was removed) or (ii) a radius-2 star (after
removinge-f). On the other hand, if the degreemdlecreases to 3, then the resulting graph is a (iii) degrqudés
and, possibly, a path. O

We can now complete our characterizatioruafP trees with distinct labels.

Lemma 10. Every tree either contains a subtree homeomorphicto Tg or Tg or it isa caterpillar, a radius-2 star, or a
degree-3 spider.

Proof. Any treeT that is not a caterpillar must contain a lobster. One can lgimgnove leaf vertices of until

a lobster remains. Every lobster must contain a subtreedsaimt to a minimal lobstef; (a Ky 3 with each edge
subdivided once) since any lobster has at least one veréxlegree 3 and the three verticgs, andc that are at
distance 2 fronr; see Fig. 11(a). Botfig andTg each contain a subtree isomorphicTtg hence, they cannot be
caterpillars.Tg cannot be a radius-2 star or a degree-3 spider because ivbasttices of degree 3. Sindg has
radius 3 and a vertex of degree 4, it also cannot be a radites-?r1sa degree-3 spider. By Lemma 9, bathandTg

are minimal examples of trees that are not caterpillardusa@ stars, or degree-3 spiders. We next show that trees
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Figure 11: Homeomorphic copies ©§ andTg in trees for Lemma 10.

without a subtree homeomorphicg or Ty are one of the three classesWifP trees with distinct labels given by
Theorem 6.

Assume then thaf is not in any of these three classes of trees. Sinignot a degree-3 spider, there are two
cases: eithef has (i) two vertices andt with degree of at least 3 or (ii) one vertaxvith degreek greater than 3. In
case (i), we find a subtree ®fhomeomorphic tdg. Let x andy denote the two vertices of degree 3ligy wherey is
the one with adjacent leaf vertices; see Fig. 11(b). Sintenot a caterpillar it must have a subtree isomorphitio
W.l.o.g. lets be the vertex inT corresponding to the root vertexof T, and lett be any other vertex with degree of
at least 3inT.

We map the verticesandt from T to the verticex andy from Tg, respectively. Sincehas degree of at least 3 in
T, there exist two neighbors vhot along the path fromatotin T, which we map to the two vertices that correspond
to the leaf vertices adjacentyan Tg. Only one of the three verticesv, andw in T, corresponding to the leaf vertices
a, b, andc of T7, can be along the pathtotin T. Suppose w.l.0.g. it is the vertexhat corresponds th. Then the
verticesu andw in T that correspond ta andc in T7 can be mapped to the two remaining leaf verticegn This
completes the mapping of verticesky, showing thafl contains a subtree homeomorphidp The only subdivided
edge ofTg is x-y that maps to the path frositotin T.

Next we consider case (ii) in which we find the subtre@ilmomeomorphic tdlg. The one vertexs in T of
degreek greater than 3 must be the vertex corresponding to the ratebwef the subtree iff isomorphic toT7; see
Fig. 11(c). Otherwise, if there were separate vertices gfekegreater than 3, case (i) would apply. udte mapped
to the degree-4 vertexof Tg. SinceT is not a radius-2 star, there exists a veseat a distance 3 from, which can
be mapped to the leaf vertex iy at a distance 3 from.

Only one of the three verticesy, andzin T, corresponding to the leaf verticasb, andc of T7, can be along the
path fromu to w. W.l.0.g. supposé corresponds to the vertgxalong the path fronu to w. The other two vertices
xandzin T that correspond ta andc in T; can be mapped to the other two leaf vertice3¢n The remaining leaf
vertex of Tg adjacent tov can be mapped to the fourth vertex adjacent in T sinceu has degree greater than 3.
Hence,T has a subtree that is homeomorphidto O

Combining Theorem 6 and Corollary 8 with Lemma 10 gives ouinntldeorem characterizingLP trees with
distinct labels.

Theorem 11. The following three statements are equivalent:

1. T does not contain a subtree homeomorphicto Tg or Tg.
2. T isacaterpillar, aradius-2 star, or a degree-3 spider.

3. T is ULP treeswith distinct |abels.

4. Unlabeled Level Planar Treeswith Duplicate L abels

First, we show that caterpillars are the oty P trees with duplicate labels and then show thatis the only
minimal forbidden subtree.



4.1. Drawing ULP Treeswith Duplicate Labels

We extend Lemma 2 to compute a linear-time realization oftarpdlar for any labelingy by showing that it is
alsoULP with duplicate labels. For any nonempty sulddetf V, we defineDup(U) to be the number of vertices th
with “duplicate” labels, i.e.Pup(U) = 0 if all of U have distinct labels, whered3up(U) = |[U| — 1 if all of U have
the same label. For a tree, we also defing.«(v) andLygow(V) to be the sets of leaf vertices that are adjacentito
T with labels less than and greater thim), respectively. The distance between adjacent spinecesxtiandvi,; is
then a function of the number of duplicate labels of the leafiges ofv; as given by the following lemma.

Lemma 12. An n-vertex caterpillar on k levelswith an m-vertex spine can be realized with straight-line edgesin O(n)
timeon a (m+ b) x k grid for any labeling whereb = >, max{Dup(Lasove(Vi)), DUp(Loeiow(Vi))}-

Proof. We draw the sping;-v,- - - - vy, from the left to the right so that the leaf verticed@fove(Vi) andLpeow (Vi) lie
to the right ofv; for i € [1..m]. With a clockwise (or counterclockwise) radial sweep, wavdeach vertex itapove(Vi)
(or Lpeiow(Vi)) at the next available grid point. Drawing the spine edgg;,; with the leaf vertices of; takes a total
of (1 + max Dup(Lapove(Vi)), Dup(Lbdow(vi))}) x k space.

Placev;,; at the nexix-coordinate to the right of the leaf vertices\pf see Fig. 12. Since each of the edgeg
incident tov; have unique slopes, at most one |éamight lie along the edge-vi,;. In this casef is moved to the
left so as to have the samecoordinate as;.

This drawing is then a realization with straight-line edgiege each leaf incident tg is either drawn above or
belowy; or to the right ofv; in order to avoid all crossings. The pseudocode for thisrélgm is given next.

Draw—Caterpillar(T(V, E, ¢))
> T is a caterpillar with distinct or duplicate labels.
1. LetS, vi-Vp-----Vy, be the spine of , andL be the leaves of .
2. Perform a counting sort dnwith key; and then withkey, such that
key1 () = ¢(¢) andkey,(¢) = i for each leaf in L adjacent toy;.
3. LetlLy, Ly,..., Ly be sublists where eadhin L; is adjacent tw;.
4. Initialize x, the x-coordinate of the current spine vertex, to 1.
5. Foreacly fori e [1..m]:
6 Placev; at(x, ¢(v;)) and draw spine edge-vi,1 if i > 1.

m—+ b

Figure 12: A realization of a 45-vertex caterpillar with diopte labels on a 2& 6 grid. Arrows indicate how vertices initially placed on 1si
edges are moved in order to avoid any edge overlaps.



7. Setxy andx,, thex-coordinates of; above and below;, to x + 1.
8. Fornextleat in L; starting at the beginning so that) > ¢(v;):
9. Incremenk, if last leaf had the same label. Platat (xa, ¢(¢)).
10. For nextleaf in L; starting at the end so thatt) < ¢(vi):

11. Incremenk, if last leaf had the same label. Platat (x,, ¢(¢)).
12. Updatex = maxXxa, Xp} + 1.

13. For each leaf adjacent to spine vertaxwith x-coordinatevy:

14. If £ lies on spine edge-w, move( to (Vx, ¢(£)).

15. Draw edgée-v.

Step 2 forms a linear-time radix sort on the leaf verticesd@liaws processing in clockwise and counterclockwise
directions. The two calls made to counting sort each e+ k) time, sorting the adjacency lists of all the leaf
vertices simultaneously. Otherwise, it would ta@n(n + k)) time if the lists were sorted separately for each of the
mspine vertices. As a resuldraw—Caterpillar runs inO(n) time since each vertex is placed@l) time. O

Corollary 13. Caterpillarson k levelsare ULP for any O < k < n. Each can be straight-line realized in O(n) time on
an O(n) x ngrid for any labeling.

4.2. Forbidden Tree for ULP Trees with Duplicate Labels

The forbidden tred; in Fig. 13 is notULP with duplicate labels for the given labelings that force is¢ersec-
tion.

Lemma 14. There exists a duplicate labeling that prevents T, from being level planar onk levelsfor any 2 < k < n.

Proof. LetC andC’ denote chaina-b-c-d-eanda-b-c-g-f, respectively. Foll;, if k = 2, let¢ obeyg(a) = ¢(c) =
o(f) = #(e) > ¢(b) = ¢(d) = ¢(g). W.l.o.g. assume that bo@andC’ each proceed left to right in order to avoid self
intersections. This means thatb intersects track, to the left of wherec and f intersectt; and trackf,, to the left

of whered andg intersect/,, whereasg-e and f-g intersect, to the right of where intersects,. In order forc-d
not to crosgl-e, c-d must intersecty, to the left of wherel intersectd,. However,f-g must then cross-d.

ForTo, if 2 <k < n, let¢ obey¢(a) > ¢(d) = ¢(g) > ¢(c) > ¢(b) > ¢({e, f}). Assume w.l.o.g. tha proceeds
left to right. ForC to avoid a self intersectiom-b intersects to the left ofc and¢y to the left ofd, whereasd-e
intersects/; to the right ofc and¢, to the right ofb. For a-b to avoid crossing-g, a-b must intersecty to the
left of g while d-e must intersecty to the right ofg sincely = £4. However, this implies-g must cross the chain
a-b-c-d. O

Corollary 15. Atree T(V, E) cannot be ULP with duplicate labelsif T containsa subtree isomorphicto T5.

Proof. We give a non-planar labelingif T contains a subtree homeomorphidto Any such homeomorphic subtree
must contain a subtreE (V’, E’) isomorphic toT;. This is because the homeomorphic subtree only has onexverte
of degree 3 that would be mapped to the corresponding ro®t.oAAssign the vertices 0¥’ using a labeling from
Lemma 14 preventin@’ from beingULP with duplicate labels. Since this is an isomorphism, we ciga the other
vertices ofT to any of the remaining levels. Given that the subfféaas a self-intersection with, so musfr. [

Ty QOO G O/i

)
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Figure 13: Level assignments that prev&ntfrom beingULP with duplicate labels.




Next, we show thal7 is minimal with the following lemma.
Lemma 16. Removing any edge from T yields a forest of caterpillars.

Proof. Removing an edge fromy incident to its root; see Fig. 13(a), leaves a path and a lone edge. Otherwise,
removing an edge leaves a caterpillar. O

Next, we prove that if a tree does not have a subtree isomotphi; then it must be a caterpillar.
Lemma 17. Ann-vertextree T either containsa subtreeisomorphicto T7 or T isa caterpillar.

Proof. One can repeatedly remove leaf vertices from any tree thttia caterpillar until one has a lobster. One can
continue removing leaf vertices from any lobster until oae the lobster;. The lobsteiT is minimal since it cannot
have any more leaf vertices removed without becoming auidleerby Lemma 16. Hence, every lobster must contain
a subtree isomorphic {oy.

By definition, a caterpillar cannot contain a subtree thadmorphic to a lobster such &s. Hence, the set of all
trees is clearly partitioned between those with a subt@aasphic toT, which are notJLP, and those without such
a subtree, which are caterpillars. O

Combining Corollaries 13 and 15 with Lemma 17 gives our mia@otem characterizindLP trees with duplicate
labels.

Theorem 18. The following three statements are equivalent:
1. T does not contain a subtree isomorphicto T-.
2. T isacaterpillar.

3. T is ULP with duplicate labels.

5. Linear Time Recognition of ULP Trees

While anyULP tree can be drawn in linear-time, the question remains hosletermine if a tree i§)LP before
doing so. The next theorem gives our linear-time recogmiigorithm.

Theorem 19. Any ULP n-vertex tree T(V, E) can be recognized in O(n) time.

Proof. If the number of levels is less thamthis implies that there are duplicate labels in which case@nly need to
determineifT is a caterpillar. Otherwise, we also need to determine vehdtlis a radius-2 star or a degree-3 spider.
This is done with the following pseudocode.

Is—Caterpillar(T(V, E)) > Tisatree.
1. LetT’ be the subtree dF given byRemove—Leaves(T).
2. Returntrue if T’ is a path; returtialse otherwise.

Is—Radius—2-Star(T(V, E)) > Tisatree.
1. LetT’ be the subtree dF given byRemove—Leaves(T).
2. LetT” be the subtree oF’ given byRemove—Leaves(T’).
3. Returntrue if T” has only one vertexand all the other vertices
in T have degree 2 iff; returnfalse otherwise.

Is—Degree—3-Spider(T(V, E)) > Tisatree.
1. Returntrue if the maximum degree of is 3 and ifT has only one
vertex of degree 3; retuifalse otherwise.



(a) (b) (©)

Figure 14: Findingl'7, Tg andTg in T by removing the leaf vertices ifi to get the subtre&’ in (a), (b) and (c), and repeating this process With
to get the subtre&” in (c).

Is—ULP-Tree(T(V, E), k) > T is a graph wittk labels.
1. Returnfalse if T is not a tree.
2. Ifk<|V|return Is—Caterpillar(T).
3. Otherwise, return  Is—Caterpillar(T) or Is—Radius—2—Star(T) or
Is—Degree—3-Spider(T). O

If a tree is notULP, then we know by Theorems 11 and 18 that the tree must contaibteee homeomorphic to
one of the forbidden trees. The next two theorems show hactr also be done in linear time.

Theorem 20. A subtree isomorphic to T; can be found in any n-vertex tree T(V, E) that is not ULP with duplicate
labelsin O(n) time.

Proof. By Lemma 17, ifT is notULP with duplicate labels, thefi must contain a subtree isomorphicTg. By
removing all leaf vertices fronT, we obtainT’. We look for any vertex inf’ of degree 3 or more, which then
corresponds to the rootof the lobsterT; in T; see Fig. 14(a). This allows us to find a subtree isomorphik; tm
O(n) time as follows:

Find—T,—Subtree(T(V, E))
> T is atree that is ndLP with duplicate labels.
1. LetT’ be the subtree dF given byRemove—Leaves(T).
2. Letr be a vertex of degree at least 3Tlihand leta, s, andx be any
three neighbors af.
3. Letb, t, andy be any neighbors (other thahof a, s, andxin T.
4. Return the induced subtreeDfon the verticesr, a, b, s, t, X, y}. O

Theorem 21. A subtree homeomorphicto Tg or isomorphic to Ty can be found in any n-vertex tree T(V, E) that is not
ULP with distinct labelsin O(n) time.

Proof. By Lemma 10, ifT is notULP with distinct labels, we may assume that it either contaiesl@ree homeo-
morphic toTg or to Tg. If there exists a homeomorphic copy ®f in T, then the edge-v between the vertices of
degree at least 3 is the only subdivided edge.

To find this subdivided edge dfg, we first take any verted of degree 3 or more i’ (the subtree oT obtained
by removing all of its leaf vertices); see Fig. 14(b). Thisregponds to the root of the lobsierin Tg. Any remaining
vertex of degree 3 or more ih can then play the role af Comparingl’ andT’ in this way allows us to find a subtree
homeomorphic tdg if one exists inO(n) time as follows:

Find—Tg—Subdivision(T (V, E))
> T is atree that is ndtLP with distinct labels.
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LetT’ be the subtree of given byRemove—Leaves(T).

Letu be any vertex of degree at least 3lih

Letv be any other vertex of degree at least Jinf one does not
exist, return the empty tree.

Letp be the unique pathtovin T, and letV, be the vertices op.
Letsandt be any neighbors of in T that are not irvy.

Leta andx be any neighbors afin T’ that are not irV,.

Letb andy be any neighbors (other thapof aandx, resp., inT.
Return the induced subtreeDion the verticesa, b, s t, X, y} U V.

wn
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Finding a pathp in step 4 can be done i@®(n) using depth-first search starting from veriex Following the
predecessor tree fromto u gives the pattp.

To find aTg subdivision, it stfices to find a subtree isomorphicTg sinceTg only contains one vertex of degree
greater than 2. Any subdivided edges only introduce vesti¢elegree 2, hence,Tfcontains a subtree homeomorphic
to T, it must also contain a subtree isomorphidto

We begin by removing all leaf vertices fromin order to obtainl’, and repeat this procedure @nin order to
obtainT”; see Fig. 14(c). Since vertexof degree 4 il has one leafl at a distance of 3, two other leaf vertides
andy at a distance 2, and one other lgaét a distance I has a subtree isomorphicTg if and only if (i) r isin T”,

(ii) r has degree at least 31, and (ii)r has degree at least 4Th Once we have, we can find a subtree isomorphic
to Tg in O(n) time as follows:

Find—T,—Subdivision(T (V, E))
> T is atree that is ndbLP with distinct labels.

1. LetT’ be the subtree oF given byRemove—Leaves(T).

2. LetT” be the subtree oF’ given byRemove—Leaves(T’).

3. Letr be any vertex ifT” with degree at least 3 iii’ and with degree
at least 4 iriT. If one does not exist, return the empty tree.
Letsbe any neighbor of in T”.

Lett be any neighbor of (other tharr) in T’, andu be some

neighbor oft (other thars) in T.

Leta andx be any neighbors (other thahofr in T’.

Letb andy be any neighbors (other thapof a andx, resp., inT.

Letw be any neighbor of (other tharg, s, andx) in T.

Return induced subtree ®fon the vertices$a, b, r, s, t, u,w, X, y}. O

o s
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6. Conclusion and Future Work

Level planarity adds two constraints to standard planaFilst, vertices are each labeled with an integer between
1 andk, assigning it to one dof levels, where thg-coordinate of a vertex is determined by its label. Secoddee
connect vertices of distinct levels and are composed daitlstii-monotone line segments.

We added the restriction that the underlying graph be lelsigr over all possible labelings. We termed level
planar graphs that meet this final restriction unlabeledllplanar ULP). We considered two cases: distinct labels
with one vertex per level, and duplicate labels with fewgele than vertices.

This led us to consider the following questions that we haswered for trees:

(1) Which graphs ar&JLP with distinct labels and which are not, and why?
(2) How can these graphs always be drawn for any labeling?

(3) Can these graphs be easily recognized?

(4) Are there graphs that are alsaP for the case of duplicate labels?

We briefly summarize our results and their significance.



(1) ULP trees with distinct labels consist of caterpillars, ragustars, and degree-3 spiders. Every other tree contains
one of the two forbidden tredg andTy. This is akin to Kuratowski'«s andKs 3 forbidden subdivisions of planar
graphs.

(2) Each type olULP tree can be drawn in linear-time and space on an integer grianfy labeling. Our algorithms
produce consistent drawings in which the same graph is draasimilar manner for any labeling. This has the
added benefit of allowing dynamic visualization in which taleelings can be permuted arbitrarily.

(3) ULP trees can be recognized by determining in linear-time ifttee contains a subtree homeomorphic to one
of the forbidden trees. We have afiieient implementation of all these algorithms that dynathiadetermines
whether a given tree iJLP, and if so, provides a compact level planar drawing. If natjrestance of one of
the forbidden subtrees is highlighted. A fully functionalglementation, along with movies, screen shots, and
downloadable example graphs highlighting each algoritamle found ahttp://ulp.cs.arizona.edu.

(4) Caterpillars are the only trees that are al&® when multiple vertices can have the same label. This imtiats
level caterpillars are the only trees that are always lelaigr.

In the conference version of this paper [9], only the firstsjiom was fully addressed, while the second and third
guestions were only partially addressed, and the fourtktégprewas not considered. Recently, the first two questions
have been answered for general planar graphs [12], whiah éx@nsion of this work here, although the remaining
two questions have yet to be addressed in the general caseseTbf forbiddetULP graphs given in [12] includes
the forbidden tree$g andTy. The corresponding characterization for genedaP graphs relies on the correctness of
the results given here f&fLP trees. Moreover, the fact that neithBy nor Tg is ULP is fundamental in proving the
completeness of that characterization and the proofs i {lf#ch does not repeat the arguments given here.

In addition to generalizing all of thEILP tree results tdJLP graphs, future work includes extending these re-
sults for other types of planarity, such as radial level ptag and cyclic level planarity. A§ILP trees were useful
for finding newMLNP tree patterns [13]ULP graphs should be useful for finding other missing level ntamar
patterns [1].
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